Archive for the ‘Redactions’ Category

The President and the Bomb, Part III

Monday, April 10th, 2017

This is the third blog post I've written on the question of presidential nuclear authority. If you have unresolved questions, or feel like I'm taking some things for granted, you might first check out Part I (in which I introduce the problem) and Part II (in which I deal with a few common objections), if you haven't already seen them.

One of the several projects I’ve been working on for the past several months has, at last, come to fruition. Way back in late November 2016, I got in touch with my friends at NPR’s Radiolab, Latif Nasser and Robert Krulwich, right after I had my Washington Post piece on the question of presidential nuclear weapons authority. The final product is now out, as a podcast given simply the title of “Nukes”:

Radiolab Nukes

If you are having trouble using the Radiolab website to get it (and the podcast starts after a 5 minute promotion for another podcast), you can download the trimmed MP3 here.

Radiolab, as many of you probably know, is a show about science and many other things. The pitches they like tend to revolve around interesting people who, traditionally, need to still be alive to be very effective at radio. (And as such, their concerns are often very different from those of historians, who prefer to traffic in the dead.) Latif and I have been friends for a long time now (we were in graduate school together), and have bounced ideas around for a long time, and he has pushed me in the past to find “living specimens” of the nuclear age that illuminate interesting questions.

One of the cases I mentioned in my Post piece was Harold Hering, the Major who was kicked out of the Air Force for asking a “dangerous question” while training to be a Missile Launch Officer at Vandenberg Air Force Base. Hering had asked, in essence, how could he, in his Minuteman missile bunker, know that an order to launch he received from the President had been a legal, considered, and sane one? (And if you want to know exactly what Harold asked, listen to the podcast, where we worked to make sure we really could nail this down as best we could, four decades after the fact.) The fact that his persistence in asking this question, and his lack of satisfaction with the answers, got him drummed out of the service was, I thought, and interesting comment on the nature of what “reliability” means in the context of nuclear weapons personnel. I had gotten interested in Harold’s story because it was discussed in Congressional testimony from 1976, during the only serious hearings that Congress had on this matter, and there was an article from Parade magazine about him appended to the hearings.

"Who pushes the button?" An article from Parade attached to Congressional hearings on Presidential authority and First Use from 1976.

"Who pushes the button?" An article about Hering's case from Parade attached to Congressional hearings on Presidential authority and First Use (1976).

It had occurred to me that while Harold was likely quite old, he was probably still alive. I thought it might be worth seeing if I could track him down, and to see if he would be potentially willing to talk about his experiences with me, and to be recorded for the radio. In tracking him down, I thought I might have to utilize all of my Internet-searching, archive-crawling, database-accessing skills. A glance at’s records made it clear he was born in Indianapolis, and helped me pin down his exact age. A good start, I thought, but with the elderly in particular it can be very hard to get further than that, since they are often not very wired into the modern world.

On a whim, though, before really starting the heavy-duty work, I would put his name into Facebook. Sure enough, there he was: the right age, the right place (still living in Indianapolis), and a Facebook profile photo of him as an USAF officer in the 1970s. So much for my searching skills.

I got in touch with Harold, got in touch with Latif and Robert, and thus started our multi-month process of researching, interviewing, and digging. There were a few issues that we thought would work best for the Radiolab format: the nuclear chain of command, the tensions between automation and human judgment, the question of how one might “remedy” the current situation (assuming one thought it was worth remedying, which I do).

One of the more dramatic sections of Hering's 1973 journal — where the question he asked got finally translated into a disqualification, delivered in front of his family. "A more

One of the more dramatic sections of Hering's 1973 journal — where the question he asked got finally translated into a disqualification, delivered in front of his family. "A more false statement has yet to be made," writes Herald.

I sat in on a number of the interviews, and provided a lot of additional research. I’ve worked with Radiolab in the past, but never quite this close. It was fun. In the process, I got to talk and correspond a bit with not only Harold — which was a complete joy, as was the fact that he had kept a journal of his troubles in the 1970s, and was willing to provide it to us — but also with scholar and former missileer Bruce Blair, US Representative Ted Lieu, and the estimable William J. Perry, the former Secretary of Defense.

I also tried to see how far I could dig into a few of the lingering questions that had kept coming up after my other pieces. One that I really wished I could nail down more, what exactly is the nuclear chain of command? How many people are in between the President and the actual use of nuclear weapons? Where exactly is the “jump” between the “political” wing of the US government (e.g., the Executive Branch) and the “military” wing that actually implements the order?

This is a place where people still had pushed me after my Post piece. How much could one really say about such things, as someone without a clearance? And on what evidentiary grounds could one say it?

"1st Lt. Pamela Blanco-Coca, 319th Missile Squadron missile combat crew commander, and her deputy commander, 2nd Lt. John Anderson, simulate key turns of the Minuteman III Weapon System Feb. 9, 2016, in a launch control center in the F.E. Warren Air Force Base, Wyo., missile complex. When directed by the U.S. President a properly conducted key turn sends a 'launch vote' to any number of Minuteman III ICBMs in a missileer's squadron, with two different launch votes enabling a launch. (U.S. Air Force photo by Senior Airman Jason Wiese)"

The "farthest end" of the chain of command: "1st Lt. Pamela Blanco-Coca, 319th Missile Squadron missile combat crew commander, and her deputy commander, 2nd Lt. John Anderson, simulate key turns of the Minuteman III Weapon System Feb. 9, 2016, in a launch control center in the F.E. Warren Air Force Base, Wyo., missile complex. When directed by the U.S. President a properly conducted key turn sends a 'launch vote' to any number of Minuteman III ICBMs in a missileer's squadron, with two different launch votes enabling a launch. (U.S. Air Force photo by Senior Airman Jason Wiese)"

Blair has insisted (in e-mail to me, and in our interview) that the whole “could the Secretary of Defense refuse an order” question was a red herring. The Secretary of Defense, he insisted, was completely dispensable with regards to the deployment of nuclear weapons. As I noted in my Post piece, there are several descriptions of the nuclear chain of command that imply that the Secretary of Defense is necessary, as the “conduit” (my term) between the political and military worlds. But is it true? Blair emphatically said no — but I never felt completely comfortable just taking his word for it. It’s not that I doubted Blair’s sincerity, or his long history of research and experience with this topic (aside from being a missileer himself, he also spent years researching command and control questions), but I’m a historian, I want a document to point to! Collecting good citations is what historians do.

What’s tricky, here, is that there are clear instances where the Secretary of Defense’s job is defined as translating a presidential order into a military result. And there are places in the descriptions of various components of the US nuclear command and control organization where the uppermost political “unit” is the National Command Authorities, which is defined as the President and the Secretary of Defense. Which has led a lot of authors to insist that there is a big role there, of some sort. And even I entertain the possibility in the Post piece, and in the Radiolab piece (my specific interview was recorded some months ago). The reason is pretty clear — DOD Directive 5100.30 states:

The NCA [National Command Authorities] consists only of the President and the Secretary of Defense or their duly deputized alternates or successors. The chain of command runs from the President to the Secretary of Defense and through the Joint Chiefs of Staff to the Commanders of the Unified and Specified Commands. The channel of communication for execution of the Single Integrated Operational Plan (SIOP) and other time-sensitive operations shall be from the NCA through the Chairman of the Joint Chiefs of Staff, representing the Joint Chiefs of Staff, to the executing commanders.

Which seems to set up the Secretary of Defense as an essential part of the chain. The directive in question is not especially recent (the unclassified version of the directive  dates from 1974), and it doesn't clarify exactly how important the Secretary of Defense might be.1

But over the last few weeks, while working on this episode and my own further digging into the matter, I have become convinced that the weight of the open evidence points to the idea that Blair is correct — the Secretary of Defense is not just unnecessary, but not even in the nuclear chain of command. What convinced me?

2015 - Annex 3-72 Nuclear Operations

First, I found perhaps the only piece of military doctrine that actually explained, in a clear and concise fashion, how a nuclear order would be carried out. And it’s not some ancient Cold War archival document… it’s from 2015! On the website of the USAF’s (appropriately named) Curtis E. LeMay Center for Doctrine Development and Education, one can find ANNEX 3-72 NUCLEAR OPERATIONS, last updated in May 2015. It states, in a clarity that (after reading a lot of DOD doctrine) makes me want to weep with joy, despite the message:

The President may direct the use of nuclear weapons through an execute order via the Chairman of the Joint Chiefs of Staff to the combatant commanders and, ultimately, to the forces in the field exercising direct control of the weapons.  

Which seems pretty definitive. The order jumps immediately from the President to the military, in the form of the Chairman of the Joint Chiefs of Staff, and from there percolates through the system of command, control, and communication to the various people who actually turn the keys and put the “birds” into the air.

Could the doctrine be wrong? Presumably such things are carefully screened before being offered up as official doctrine, and it seems about as clear as can be, but it's always possible that something got mangled. But one other useful piece of evidence is that we asked Perry, the former Secretary of Defense, at point blank whether the Secretary of Defense was in the chain of command. The answer was a clear “no.” Perry explained that while, presumably the Secretary of Defense would express opinions and given counsel, the President was under no legal obligation to take such counsel, and the objection of the Secretary of Defense had no bearing either legally or practically.

I don’t know what your standard of evidence about such a question might be, but personally I find the testimony of a former Secretary of Defense, combined with a reasonably up-to-date piece of Air Force doctrine, to settle the case for me (at least, pending more evidence). No other assertions about the nuclear chain of command that I’ve seen have quite that kind of weight behind them.

Does this change our initial question, about who might say no? It shifts the attention away from the civilian Secretary of Defense (which is a civilian job, whether or not the person in the role is a retired General, as is currently the case) to the military position of the Chairman of the Joint Chiefs of Staff. Could such a person disobey the order? Perry suggested they might in practice try to, but there would be legal consequences (e.g., a court martial).

I gave a talk on these issues last week at the Belfer Center for Science and International Affairs at the Harvard Kennedy School (where I was a postdoctoral fellow in the Managing the Atom Program some years ago, and where I maintain an active affiliation), and two members of the audience (one an Air Force officer, the other my grad school colleague Dan Volmar, who works on the details of nuclear command and control history) pointed out that when doctrine says “the Chairman of the Joint Chiefs of Staff,” it is usually referring to a staff and not an individual person. Which is to say, it doesn’t necessarily indicate an individual personage, but instead indicates a web of people that are connected to the authority of that personage. I am not sure what would apply in this kind of extraordinary situation, but I thought it was an interesting point to bring up.

A slide from my Belfer Center talk on nuclear chain of command (in the talk, I remove the SecDef from the chain) — a little bit of levity on a serious topic. Graphics created using Keynote's shape templates (yes, the hair is an upside-down speech bubble).

A slide from my Belfer Center talk on nuclear chain of command (in the talk, I end up removing, the SecDef from the chain, per the issues discussed in this post) — the graphical whimsy is a purposefully a little bit of levity on a serious topic. Graphics created using Keynote's shape templates (yes, the hair is an upside-down speech bubble). And yes, I know I have "black boxed" C3 (command, control, and communications) operations in a "and now a miracle occurs" fashion.

I have even less faith than before in the idea that an order of such would be disobeyed. Not that I think the military is eager to deploy nuclear weapons — I’m sure they are not, and in fact I tend to feel that they have in the post-Cold War come to realize at some deeper level the risks associated with such weapons and the difficulties they impose on their services. But I do think that the nuclear command and control system is set up, both practically and doctrinally, to avoid asking the questions that are seen as being in the purview of the “political” side of the equation. From the same “Annex 3-72” (my emphasis):

The employment of nuclear weapons at any level requires explicit orders from the President. The nature of nuclear weapons — overwhelmingly more significant than conventional weapons — is such that their use can produce political and psychological effects well beyond their actual physical effects. The employment of nuclear weapons may lead to such unintended consequences as escalation of the current conflict or long-term deterioration of relations with other countries.  For this reason above all others, the decision whether or not to use nuclear weapons will always be a political decision and not a military one.

Now, obviously conditions would dictate varying responses. I have faith that an “obviously bonkers” order would be somehow avoided (e.g., a frothing, “nuke them all, ha ha ha,” sort of thing). I’m not worried about that situation (it’s not outside the realm of human possibility — all humans are fallible, many develop various forms of mental illness, etc.), but I am worried about what I consider to be “ill-advised” orders, or “bad idea” orders, or “spur of the moment” orders that are considerably less apocalyptic (at least on their surface) than, say, a full nuclear exchange.

What would the military do in such a situation, if a correctly authenticated, correctly-formatted “execute order” came to them on their secure channels? I don’t have faith they’d abort it. Maybe you do — that’s fine, and I appreciate the company of optimists. But I just want to point out, the notion that the system won’t work as intended is not a real “check.” It’s just hoping things will break in a way that would be convenient. I think we can do better, and I think that the consequences associated with the possibility of the rash use of nuclear weapons by an American President — any President — large enough to warrant trying to make a better (if not perfect) system, even if one thinks the probability of such a thing happening is low.

  1. Blair's interpretation of 5100.30 is that it was about removing the service chiefs and JCS from decision-making positions, and established the JCS as (only) an intermediary. He says that "on the inside" it is understood that the Secretary of Defense is just an advisor, like the Secretary of State. (E-mail to me.) On the history of 5100.30, see William Burr, ed., "Top Air Force Official Told JCS in 1971: 'We Could Lose Two Hundred Million People [in a Nuclear War] and Still Have More Than We Had at the Time of the Civil War'," National Security Archive Electronic Briefing Book No. 580 (February 15, 2017). Later (post-1970s) updates of DODD 5100.30 appear to be classified, and its last iteration was in 2006, and it was cancelled in 2014. See Reference (a) in DODD 3700.01, its successor document, which has nothing illuminating on the chain of command question in it.

    I asked Blair if he had any further thoughts that I ought to share on this, and he sent me the following in an e-mail:

    5100.30 mainly tried to change the priorities of command-control investment.  Dep Sec David Packard (justifiably) feared that the U.S. nuclear command structure would collapse under attack and render U.S. retaliation impossible. He correctly understood that this acute vulnerability stemmed in large part from the chronic neglect of the national command centers and communications links by the chiefs of staff and civilian secretaries of the military departments [services] as well as the combat CINCs [unified and specified commanders], all of whom invested in their own service-specific command and communications networks at the expense of the national system and of interoperability.  Packard promulgated 5100.30 in a vain attempt to reverse these priorities and compel the service chiefs and CINCs to invest seriously in fixing vulnerabilities at the top and make systems compatible up and down and across the chain of command.  The directive makes the CJCS responsible for implementing this directive.
    In operational respects, 5100.30 sought to reinforce this change of priorities by requiring the creation of robust capabilities at the national level to ensure that the NCA could survive a nuclear attack and effectively communicate nuclear war orders not only to the CINCs but also directly to the executing forces at the level of the individual commanders of strategic submarines, bombers, and land-based missiles.  Again, the JCS was assigned responsibility for implementation — i.e., ensuring the transmission of the "go-code" (as well as termination) messages.  The Deputy Director for Operations's war room in the Pentagon was the assigned conduit.  The service chiefs of staff and civilian secretaries were bypassed by this flow chart, as was the Secretary of Defense, who served merely as an advisor to the President, like the Secretary of State, and who might or might not be asked his opinion at the moment of truth.  Even the CINCs became less critical in execution since the launch order was supposed to flow directly from the Pentagon war room (the National Military Command Center) to the firing crews at the bottom of the chain of command.


FDR and the bomb

Friday, September 30th, 2016

Franklin D. Roosevelt is one of the most enigmatic figures of the early American atomic bomb program. The four-term US president always features briefly in any story of the Manhattan Project: first, for his creation of the Advisory Committee on Uranium, an exploratory research effort in response to a letter urging government action that was sent by Albert Einstein in August 1939; second, for his approval of a broader expansion of that research into a "pilot" program in late 1941, just before the US entry into World War II, which resulted in more intensive investment into uranium enrichment and reactor design; and third, in mid-1942, Roosevelt approved bringing in the US Army Corps of Engineers to manage a full-scale bomb-production project. This latter action is often subsumed by the attention given the first two, but it is the production program decision that actually resulted in the US getting an atomic bomb by 1945, and is the decision that makes the United States unique among powers in the Second World War, as while several powers had research programs, only the US turned it into a production program. It was the beginning of the Manhattan Project as we tend to characterize it, the kind of program that produces weapons and not just data.

A little history trick I always tell my students: if you see Truman and FDR in the same photograph, that means Truman doesn't know about the atomic bomb. Photo source:

A little history trick I always tell my students: if you see Truman and FDR in the same photograph, that means Truman doesn't know about the atomic bomb. Photo source:

So Roosevelt looms large, as he ought to. Without Roosevelt's actions, there would have been no atomic bomb in World War II. And yet... What did FDR really think about the atomic bomb? Did he see it as a true end-the-war weapon? Did he think it was meant to be used in war (as a first-strike weapon) or did he think of it primarily as a deterrent (i.e., against the Germans)? The question isn't just an idle one, because Roosevelt's sudden death, on April 12, 1945, left his successor, Harry Truman, with major decisions to make about the future of the war, and Truman, in part, thought he was acting in accordance with FDR's wishes on this matter. But, as is well known, FDR never told Truman about the atomic bomb work, and never set out his wishes on this matter — so there was a tremendous amount of assumption involved.

I get asked about FDR's views on a fairly regular basis, and it's one of those wonderful questions that seems simple but is really quite complex, and quickly gets you into what I think of as "epistemological territory": How do we know what someone's views were, in the past? How do we get inside the head of someone dead? Well, you might say, obviously we can't completely get inside someone's head (we can barely get inside the heads of people who are alive and in front of us, and a Freudian might argue that we barely have conscious access to our own motivations and thoughts), but we can look at what evidence there is that was written down that might reveal some of their inner thoughts.

But with FDR, this is very tricky: he didn't write that much down. He didn't keep a diary or journal. He didn't send that many letters. He didn't record phone calls, conversations, write "memos to self," or any of the other documenting habits that are common to major political figures. He was notoriously secretive and private. He didn't explain himself. If Truman was comparatively straightforward in his thinking and action, Roosevelt was a grand schemer, trying to out-wit and out-charm the world (sometimes successfully, sometimes not). He could be downright gnomic. At one point, Vannevar Bush (FDR's top science advisor) asked Roosevelt whether the Secretary of the Navy ought to be included in discussions on the bomb project. He later recalled that FDR "looked at me with one of his strange smiles and said, 'No, I guess not, not now.'" End of anecdote, no real indication as to what FDR was thinking, other than a "strange smile" that no doubt concealed much.1

What approval of a nuclear weapons program looked like under Roosevelt: "VB OK FDR." Report by Vannevar Bush of June 16, 1942, asking to expand the fission work into an all-out effort.

What approval of a nuclear weapons program looked like under Roosevelt: "VB OK FDR." Report by Vannevar Bush of June 16, 1942, asking to expand the fission work into an all-out effort.

As this example indicates, we do sometimes have accounts, including contemporary ones, by people who met with Roosevelt and talked with him. But even these can be quite tricky, because FDR did not, again, generally explain his full thinking. So people like Bush were left with half-versions of the story, knowing what FDR said but not what he thought, and while this is, to be sure, a common-enough human experience, with FDR the gap between thought and expression was exceptionally large.

Separately, there is another, related issue that complicates our understanding: people who met with FDR would often use tales of his agreement as a form of authority. Vannevar Bush did this repeatedly, and this is no doubt a pretty standard mode of operation regarding advisors and presidents. Bush would go to FDR with an idea, convince FDR to sign off on Bush's idea, and then claim it was FDR's idea, because while people might feel free to disagree with Bush, they couldn't really disagree with FDR. One of the most famous examples of this is Bush's report on postwar American science policy, Science—The Endless Frontier, which is constructed to look like it is a reply to a letter by FDR for guidance, but was entirely engineered by Bush as a means of pushing his own agenda, with FDR being a complicit as opposed to a driving force.2

So what do we know? The number of documents that give insight into FDR's personal thoughts about the atomic bomb — what it was, what it could be used for, what his plans were — are very slim. Some of this is a function of timing: FDR died right around when they were getting concrete estimates for when the atomic bomb would be ready to use, and had he lived until, say, May 1945, he might have been faced with more direct questions about his plans for it. (The first Target Committee meeting was on April 27, and the Interim Committee was created in early May, just to give an indication of how things rapidly started to come together right after FDR died.) So he wasn't part of the conversations that directly led to the use of the atomic bombs on Japanese cities.

But there are a few other documents that are useful in assessing FDR's views. It seems fairly clear that FDR's approval of the Uranium Committee in 1939 was initially because he was interested in the deterrent quality of the bomb. Alexander Sachs, who had the meeting with Roosevelt, related that FDR had confirmed that the goal was "to see that the Nazis don't blow us up."3 Again, this wasn't yet a bomb-making program, it was just a "see if bombs are worth worrying about" program, but that's still a little insight: it shows, perhaps, that the initial, explicit attraction was not in making a new wonder-weapon, but deterring against another one.

Roosevelt, Truman, and FDR's previous VP, Henry Wallace. Truman is the only one here who doesn't know about the bomb program. Image source: Truman Library via Wikimedia Commons

Roosevelt, Truman, and FDR's previous VP, Henry Wallace. Truman is the only one here who doesn't know about the bomb program. Image source: Truman Library via Wikimedia Commons

Between 1939 and 1941 there are big gaps in anything that would indicate FDR's views on the bomb. This is not surprising, because this was a period of relative lack of movement in the US fission program, which was not yet a bomb program. FDR was occasionally involved in discussions about the program, but there was no "bomb" yet to worry about one way or the other. In late 1941, FDR approved accelerating and expanding the research, at the urging of Bush, James Conant, Ernest Lawrence, and Arthur Compton, and in mid-1942 he approved of a full bomb production program, as previously noted. None of these documents indicate intent for use, however. The June 1942 report by Vannevar Bush and James Conant, whose approval by Roosevelt is indicated only by a scrawled "VB OK FDR" on its cover letter, indicates that a weapon made with 5-10 kilograms of U-235 or Pu-239 (then just called "Element 94") would have an explosive power of "several thousand tons of TNT." It goes into great detail on the types of plants to be constructed and the organization of the research. It predicts a "bomb" would be ready by early 1944. But at no point does it indicate what the point of such a weapon was: as a deterrent, as a first-strike weapon, as a demonstration device, etc. There is only point, towards the end, which suggests that a committee be eventually formed to consider "the military uses of the material," but even this is primarily concerned with research and development for the plants. This is not to say that Bush, Conant, et al. did not have their views on whether it would be a weapon to use or not — but the report does not indicate any such views, and so FDR's endorsement of it doesn't tell us much.4

Bush met with Roosevelt many times during the war, and sometimes would write down, afterwards, what they talked about. Clearly this is FDR-as-filtered-through-Bush, but we'll take what we can get. In late June 1943, Bush wrote to Conant with an account of a recent meeting he had with FDR on "S-1," their code for the bomb work. In it, Bush related that FDR was curious about the progress of the work and the schedule for having a bomb. Bush told him things were going well but still tentative, and that the date of a bomb had been pushed back to early January 1945, but that this could shift in either direction. FDR also wanted to know how the Germans were doing. Bush explained that they didn't really know, that they were trying to find ways to slow down any German work, and that they were still worried about being behind the Germans. (They would eventually come to understand they had surpassed them.) Then there is this really interesting passage which is worth quoting from the original:

He [FDR] then himself discussed what the enemy attitude of mind would be if they felt they had this coming along, and were inclined to remain on the defensive until it could eventuate. We then spoke briefly of the possible use against Japan, or the Japanese fleet, and I brought out, or I tried to, that because at this point I do not think I was really successful in getting the idea across, that our point of view or our emphasis on the program would shift if we had in mind use against Japan as compared with use against Germany.5

After which the conversation then shifted to other matters. Such a tantalizing snippet of discussion, but not as fleshed out as one might want! What did Bush and FDR understand the difference to be between the Japanese versus the Germans? Who initially brought up the possibility of use against the Japanese? What did FDR think about the German "attitude of mind"? This snippet hints at exactly the topics one might care about but doesn't actually reveal anything about FDR's views on them! Impressively frustrating!

Most of FDR's interactions with Bush, Groves, and others during this period concerned diplomatic issues, specifically cooperation with the British (a rather long, drawn-out saga), and even a meeting with Niels Bohr (from which FDR mostly took away a fear that Bohr might alert the Soviets, or others, to the US work). FDR helped, for example, in helping to shut down unionization activities at the Berkeley Radiation Laboratory, and was kept abreast of efforts made to monopolize global uranium ore resources. He was not "checked out" in any respect; he was dramatically more concerned with the ins-and-outs of the fission work than, say, Truman would later be. But again, very little of this left any record about what he thought they were going to do with the bomb.6

Atomic diplomacy: Roosevelt and Churchill at Quebec, in September 1944. Source: NARA via Wikimedia Commons

Atomic diplomacy: Roosevelt and Churchill at Quebec, in September 1944. Source: NARA via Wikimedia Commons

Two of the only documents that reveal any FDR-specific thoughts about the use of the bomb were agreements he made with Winston Churchill. In August 1943, Churchill and Roosevelt met in Quebec, Canada, and hammered out the secret "Quebec Agreement." It said, among other matters, that the US and UK would pool their efforts at both making the bomb and securing global uranium reserves, that they would never nuke each other, that they would never nuke anyone else without mutual agreement, and they would not reveal the secrets of the bombs without mutual agreement. So this at least provides a framework for using the bomb, but it is a limited one — FDR was willing to deliberately tie the US's hands with regards to dropping of the atomic bomb to the approval of a foreign power, quite an amazing concession!7

Another meeting between Roosevelt and Churchill, in Hyde Park, New York, produced yet another fascinating agreement. The Hyde Park Aide-Mémoire of September 1944 contained the following clause:

The suggestion that the world should be informed regarding tube alloys, with a view to an international agreement regarding its control and use, is not accepted. The matter should continue to be regarded as of the utmost secrecy; but when a “bomb” is finally available, it might perhaps, after mature consideration, be used against the Japanese, who should be warned that this bombardment will be repeated until they surrender.

Here they were explicitly rejecting the appeal by Niels Bohr (which he was able to make personally to both FDR and Churchill, on separate occasions) to alert the world about the atomic bomb. But it is of interest that they were, at this point, specifically thinking about using the bomb against the Japanese (not Germany), but that they thought it would require "mature consideration" before use, and that they were putting "bomb" in scare-quotes. This is one of the few indications we have of FDR's awareness and acceptance of the idea that the bomb might be used as a first-strike weapon, and against the Japanese in particular.

Lastly, there is one other significant FDR-specific datapoint, which I have written about at length before. In late December 1944, with Yalta looming, Roosevelt and Groves met in the Oval Office (along with Henry Stimson, the Secretary of War). In Groves' much later recollection (so we can make of that what we will), Roosevelt asked if the atomic bomb might be ready to use against Germany very soon. Groves explained that for a variety of reasons, the most important one being that their schedule had pushed the bomb back to the summer of 1945, this would not be possible. It is an interesting piece, one that simultaneously reveals Roosevelt's potential willingness to use the atomic bomb as a first-strike weapon, his willingness to use it against Germany specifically, and the fact that FDR was sufficiently out of the loop on planning discussions to not know that this would both be impossible and very difficult. In other words, it reveals that FDR wasn't aware that by that point, it was expected that the bomb could only be used against Japan, and that is a rather large thing for him not to know — further evidence, perhaps, that he was not completely abreast of these kinds of discussions. At the meeting, Groves gave FDR a report that predicted a weapon ready for use in early August 1945, and specified that it was time to begin military planning, which Groves annotated as having been "approved" by the Secretary of War and the President. But there doesn't seem to have been any specifics of targets, or even targeting philosophy, agreed upon at this point.8

What can we make of all this? Frequently I have seen people take the position that Truman himself took: assuming that Roosevelt would have used the bomb in the way that Truman did, because what else might he have been planning? I would only caution that there were more "options" on the table even for Truman than we tend to talk about, which is just another way to say that dropping two atomic bombs in rapid succession on cities is not the only way to use an atomic bomb even militarily. That is, even if one thinks it was inevitable that the bombs would be used in a military fashion (which I think is probably true), it is unclear what position FDR might have taken on the question of specific targets (e.g., the Kyoto question), the question of timing (e.g., before or after the Soviet invasion; how many days between each strike?), and diplomatic matters (e.g., would Roosevelt be more open to modifying the Potsdam Declaration terms than Truman was?). So there is room for considerable variability in the "what if Roosevelt hadn't died when he did?" question, especially given that Roosevelt, unlike Truman, had been following the bomb work from the start, and was as a result much less reliant on his advisors' views than Truman was (he frequently bucked Bush, for example, when it came to matters relating to the British).

Would Roosevelt have dropped the bomb on Japan, had he not died? I suspect the answer is yes. One can see, in these brief data points, a mind warming up to the idea of the atomic bomb as not just a deterrent, but a weapon, one that might be deployed as a first-strike attack. In some ways, FDR's query to Groves about Germany is the most interesting piece: this was a step further than anyone else at the time was really making, since Germany's defeat seemed inevitable at that point. But, again, the strict answer is, of course, that we can't really know for sure. Perhaps if FDR had confided his inner thoughts on the bomb to more people, perhaps if he had written them down, perhaps if he had been more involved in the early targeting questions, then we would be able to say something with more confidence. Unless some new source emerges, I suspect Roosevelt's thoughts on the bomb will always have something of an enigma to them. It is not too far-fetched to suggest that this may have always been his intention.

  1. Vannevar Bush, Pieces of the action (New York: Morrow, 1970), 134. []
  2. See Daniel J. Kevles, "The National Science Foundation and the Debate over Postwar Research Policy, 1942-1945: A Political Interpretation of Science–The Endless Frontier," Isis 68, no. 1 (1977), 4-26. Another example of this behavior, from my own research, is when Bush wanted to seize patent rights relating to atomic research during the war — this was an idea cooked up by Bush, approved by FDR, and then presented as an idea of FDR's, to give it more political, legal, and moral heft. See Alex Wellerstein, "Patenting the Bomb: Nuclear Weapons, Intellectual Property, and Technological Control," Isis 99, no. 1 (2008), 57-87, esp. 65-66. []
  3. Quoted in Richard Rhodes, The Making of the Atomic Bomb (Simon and Schuster, 1986), on 314. []
  4. Vannevar Bush and James Conant, "Atomic Fission Bombs," (17 June 1942), with attached cover letter initialed by Roosevelt, copy in Harrison-Bundy Files Relating to the Development of the Atomic Bomb, 1942-1946, microfilm publication M1108 (Washington, D.C.: National Archives and Records Administration, 1980), Folder 58: "Vannevar Bush Report - March 1942," Roll 4, Target 4. []
  5. Vannevar Bush to James Conant, "Memorandum of Conference with the President," (24 June 1943), copy in Bush-Conant File Relating the Development of the Atomic Bomb, 1940-1945, Records of the Office of Scientific Research and Development, RG 227, microfilm publication M1392, National Archives and Records Administration, Washington, D.C., n.d. (ca. 1990), Roll 2, Target 5, Folder 10, "S-1 British Relations Prior to the Interim Committee [Fldr.] No. 2 [1943, some 1944, 1945]." []
  6. For a very nice discussion of Roosevelt's wartime "atomic diplomacy," see Campbell Craig and Sergey Radchenko, The atomic bomb and the origins of the Cold War (Yale University Press, 2008), chapter 1, "Franklin Delano Roosevelt and Atomic Wartime Diplomacy," 1-33. On the UK-US atomic alliances, see Barton Bernstein, “The uneasy alliance: Roosevelt, Churchill, and the atomic bomb, 1940-1945,” Western Political Quarterly 29, no. 2 (1976), 202-230 []
  7. And just to follow up on that: the US did, in the summer of 1945, request formal UK approval for the dropping of the atomic bomb, and for the release of the Smyth Report and other publicity. The UK readily gave assent to using the weapon against the Japanese, but they did question the wisdom of releasing the Smyth Report. They eventually consented to that as well, after stating their reservations. []
  8. Just as an aside: the meeting, by Stimson's diary account, was only 15 minutes long, and most of it pertained to questions of diplomacy (specifically potential British violations of the Quebec Agreement with respect to French patent arrangements). Stimson's diary entry mentions nothing about targeting question, German, Japanese, or otherwise. So either the discussion of Germany and Japan did not make much impression on him, or he did not think it prudent to write it down. See Henry Stimson diary entry for December 30, 1944, Yale University. Groves own contemporary record of the meeting also neglects to mention anything relating to targets, and instead is entirely focused on diplomatic questions. Leslie Groves, Memorandum on Meeting with President (30 December 1944), Correspondence ("Top Secret") of the Manhattan Engineer District, 1942-1946, microfilm publication M1109 (Washington, D.C.: National Archives and Records Administration, 1980), Roll 3, Target 7, Folder 24, "Memorandums to (Gen.) L. R. Groves Covering Two Meetings with the President (Dec. 30, 1944, and Apr. 25, 1945)." []

The blue flash

Monday, May 23rd, 2016

This last weekend was the 70th anniversary of Louis Slotin's criticality accident. One slip of a screwdriver; a blue flash and wave of heat; and Slotin had a little over a week to live. It's a dramatic story, one that has been told before. I tried to give it a little bit of a fresh look in my latest piece for the New Yorker's Elements Blog: "The Demon Core and the Strange Death of Louis Slotin."1

Demon Core New Yorker Screenshot

In researching the piece, I looked over a lot of technical literature on the accident, as well as numerous accounts from others who were in the room at the time. A few things stuck out to me that didn't make it into the piece. One was that it was remarkably non-secret for the time. Los Alamos put out a press release almost immediately after it happened (by May 25th, five days before Slotin's death, it was in national newspapers), and followed it up with more after Slotin's death. For mid-1946, when the Atomic Energy Act had not yet been signed and the future of the American nuclear infrastructure was still very much in question, it was remarkably transparent. The press release was where I saw the phrase "three-dimensional sunburn" for the first time.

I also went over the account of Slotin's case that was published in The Annals of Internal Medicine in 1952.2 Slotin isn't named, but he's clearly "Case 3." Harry Daghlian, who also died from an accident with the same core, is "Case 1," and Alvin Graves, who was the nearest person to Slotin during his accident, and later became a director of US nuclear weapons testing, is "Case 2." The article is long and technical, and ends with some of the most disturbing photographs I have ever seen of the Daghlian and Slotin accidents. There is a photo of Daghlian's hand that has been reproduced many places (including in Rachel Fermi's Picturing the Bomb), but I'd only previously seen it in black and white. It is much worse in color — the contrast between the white blistered skin and the pink-red stuff under the cut-away area is dramatic and disturbing. There are others in the same series that are just as bad if not worse: blackened, gangrenous fingers. Slotin's photos in that article are comparatively tame but still pretty unsettling. Blisters. Cyanotic tissue. A photograph of his left hand — the one that was closest to the reacting core — on the ninth day of treatment (his last day alive) looks almost corpselike, or even claw-like. It is unsettling. I will not post it here.

An anonymous e-mail tipped me off that there were more photographs, and more documents, at a collection at the New York Public Library. These were part of a collection deposited by Paul Mullin, who authored the Louis Slotin Sonata, a very interesting, very curious play about Slotin from the late 1990s. I haven't seen the play, though I had seen mentions of it for awhile. Mullin's materials were fascinating and very useful. There were two boxes. The first was mostly notes relating to the creation of the play. It is always interesting to see how another researcher takes notes, much less one whose end-product (a play) is very different from the sort of thing I do. It does not take much glancing at his notes to see that Mullin got as deep into this topic as anyone has. The second box contained research materials: four folders of documents obtained from Los Alamos under the Freedom of Information Act, and a folder of photographs.

The hands of Louis Slotin, shortly after admission to the Los Alamos hospital. Source: Los Alamos National Laboratory, via the New York Public Library (Paul Mullin papers on the Louis Slotin Sonata).

The hands of Louis Slotin, shortly after admission to the Los Alamos hospital. Source: Los Alamos National Laboratory, via the New York Public Library (Paul Mullin papers on the Louis Slotin Sonata).

The photographs were, well, terrible. They included the ones from the Annals of Internal Medicine article, but also many more. Some showed Slotin naked, posing with his injuries. The look on his face was tolerant. There were a few more of his hand injuries, and then the time skips: internal organs, removed for autopsy. Heart, lungs, intestines, each arranged cleanly and clinically. But it's jarring to see photographs of him on the bed, unwell but alive, and then in the next frame, his heart, neatly prepared. The photo above, of just his hands, is one of the tamest of the bunch, though in some sense, one of the saddest (there is a helplessness, almost like begging, in the position). I didn't make copies of the really awful ones. History is often very voyeuristic — I joke with students that I read dead people's mail for a living — but, as I commiserated with Mullin over Twitter, at some point you start to almost feel complicit, as silly as that notion is.

The documents were invaluable. They mostly covered the period immediately after the accident — people checking in on Slotin's health, the complicated legal aspects of dealing with the death of a scientist (and with his distraught family), the questions of what to do next. An inordinate amount of paperwork was generated in dealing with the disposition of Slotin's automobile (a 1942 Dodge Custom Convertible Coupe). The Army's interactions with Slotin's family appeared sympathetic and generous. There appears to have been no cloak-and-dagger regarding the entire affair. Slotin was, after all, a friend to many of those at Los Alamos, and a key member of their "pit crew."

One of the accounts that I found most fascinating was that of the security guard, Patrick Cleary, who was in the room when the accident happened. Cleary was there because you don't just keep a significant proportion of the nation's fissile material stockpile unguarded. He seems to have understood little about what risks his job entailed, though:

When the accident occurred, I saw the blue glow and felt a heat wave. I knew something was wrong, but didn’t know exactly what it was, when I saw the blue glow and somebody yelled. ... Our instructions are also to keep in sight of all active material that is around, except in the case of a critical assembly, but [I] am not sure about that. I did not actually know what the material or sphere was at the time, or anything about it.3

When Cleary saw the flash and heard yelling, he literally took off for the hills, running. He was called back, as the scientists tried to reconstruct where people were standing for the purposes of dosage calculation. Cleary, in fact, was the last person to leave, because security guards can't walk off the job — he had to wait until a replacement came.

Close-in shot on the Slotin accident re-creation. The beryllium tamper is on top; the plutonium core is the smaller sphere in the center. Notice in this particular shot, they have a "shim" on the right. Slotin removed the shim right before his fatal slip.

Close-in shot on the Slotin accident re-creation. The beryllium tamper/reflector (they called it a tamper) is on top; the plutonium core is the smaller sphere in the center. Notice in this particular shot, they have a "shim" on the right. Slotin removed the shim right before his fatal slip. The scientist re-creating the photograph is physicist Chris Wright. I wonder if they took extra precautions in making this particular set of photos?

For a long time I had been wondering what happened to the so-called "demon core," which was also known as "Rufus," something that strikes me as just too strange to be anything but true. It has been reported many times that it was used at Operation Crossroads, at the Able shot. I found some documentation that suggested this was very unlikely. For example, shortly after the accident (Slotin was still alive), lab directory Norris Bradbury wrote to a few other scientists at Los Alamos about how the accident had affected the forthcoming Crossroads tests. He notes that the sphere in question was getting "its final check" during the accident — so it was definitely slated for Crossroads. But he continues:

Obviously Slotin will not come to Bikini. [Raemer] Schreiber will come although the date of special shipment was postponed one week to allow us to pull ourselves together. Only two shipments will be made at this time as I see no courier for the third. The sphere in question is OK although still a little hot but not too hot to handle. We will save it for the last in any event if it is needed at all.4

Which seemed pretty suggestive to me that they weren't going to use it: only two shipments were going to be made early on, and "the sphere in question" was not one of them. It would be saved for the "last event." Which in this case was the "Charlie" shot — which was cancelled.

I wanted some more confirmation, though, because a plan isn't always a reality. I e-mailed John Coster-Mullen, who I knew had done a lot of research into the Slotin and Daghlian accidents. (John is the one that provided me with these wonderful high-resolution photographs of the Slotin re-enactment, and some of the documents in his appendices to Atom Bombs were very useful for this research.) John suggested I get in touch with Glenn McDuff, a retired scientist at Los Alamos who was also one of the consultants on Manhattan (he drew the equations on the chalkboards, among other things). This turned out to be a great tip: Glenn has been working on an article about the fate of the first eight cores. There is much still to be declassified, but he was able to share with me the fate of the core in question: it had not been used at Crossroads, it had been melted down and the material re-used in another core. Glenn says there was no particular reason it was melted down. It was old, as far as cores went, and they were constantly fiddling with them in those days — the days in which they still gave bomb cores individual nicknames, because there were so few of them.

For nuke nerds, this is the big "reveal" of my New Yorker piece, the one thing that even someone very steeped in Los Alamos history probably doesn't know. (For non-nuke nerds, I doubt it registers as much!) And even though it is a bit anticlimactic, I actually prefer it to the version that the core was detonated shortly after the accident. The part about them immediately re-using the core in a weapon just always seemed a little suspicious to me — it almost implied that they had done it due to superstition, and that didn't really jibe with my sense of how these scientists viewed the accident or these weapons. And even the anticlimax has a bit of a literary touch to it: the "demon core" wasn't expended in a flash, it was melted down and reintegrated with the stockpile. Who knows whether bits of its plutonium ended up in other weapons over the years, whether any of that core is still with us in the current arsenal? There's perhaps something even a bit more "demonic" about this version of the story.

  1. A few small errata to the piece, based on a few questions I got: 1. Should the beryllium hemisphere be called a tamper or a reflector? In most contexts today we would call it a neutron reflector, because that's the property that you use beryllium for in a bomb (a tamper's job, generally, is to hold the core together as long as possible while it reacts, and so heavy, dense metals like uranium are used). But in this case, the scientists at the time referred to it universally as a "beryllium tamper" so the editor and I just decided to keep things simple and call it that, rather than call it a "reflector" and then clarify that it was the same thing as the "tamper" that was cited in the quotes. (This is the kind of linguistic hair-splitting that goes into these pieces — a balance between the historical language, the present-day language, the technical aspects, etc. We try to come to sensible decisions.) 2. At one point, it refers to the "pits" at Hiroshima and Nagasaki. This is just meant in a colloquial way here to refer to their fissile material cores. The Hiroshima bomb of course was a different design, made of two different pieces, called the Projectile and the Target in the documents at the time. It seemed unnecessary to introduce all that complexity to make a point that they didn't give it any kind of colorful moniker. 3. There was one legitimate typo in the piece as published, which was my fault. It misstated the amount of time between the Daghlian and Slotin accidents (three months instead of nine). I'm not sure how that got in there — I actually re-looked up the date differences at the time I wrote it, and know the months cold. One of those strange disconnects between the head and the fingers, I suppose, and somehow I missed it in re-reading the drafts. Very frustrating! It's the little things you aren't worried about getting wrong that can get you, in the end. It has been fixed. []
  2. Louis H. Hempelmann, Hermann Lisco, and Joseph G. Hoffmann, "The Acute Radiation Syndrome: A Study of Nine Cases and a Review of the Problem," Annals of Internal Medicine 36, no. 2 (February 1952), Part 1, 279-510. []
  3. Patrick Cleary, account of the Slotin accident (29 May 1946). Copy in the Paul Mullin, "Production materials for the Louis Slotin Sonata, 1946-2006," New York Public Library. []
  4. Norris Bradbury to Marshall Holloway and Roger Warner (undated, ca. 24-29 May 1946). Copy in the Paul Mullin, "Production materials for the Louis Slotin Sonata, 1946-2006," New York Public Library. []

Solzhenitsyn and the Smyth Report

Friday, February 12th, 2016

The Smyth Report is one of the more improbable things to come out of World War II. It is one thing to imagine the United States managing to take nuclear fission, a brand-new scientific discovery announced in 1939, and to have developed two fully-realized industrial-methods of enriching uranium, three industrial-sized nuclear reactors (plus several experimental ones), and three nuclear weapons by the summer of 1945. That improbable enough already, especially since their full-scale work on the project did not begin until late 1942. What really takes it into strange territory is to then imagine that, right after using said superweapon, they published a book explaining how it was made. I can think of no other parallel situation in history, before or since.

The original press release about the Smyth Report, issued only a few days after the Nagasaki bombing. Truman himself personally made the final decision over whether the report should be issued. Source: Manhattan District History Book 1, Volume 4, Chapter 8.

The original press release about the Smyth Report, issued only a few days after the Nagasaki bombing. Truman himself personally made the final decision over whether the report should be issued. Source: Manhattan District History Book 1, Volume 4, Chapter 8.

I have written on the Smyth Report before, talking about the paradoxical mix of motivations that led to its creation: the civilian scientists wanted the American people to have the facts so they could be good citizens in a democracy, while the military wanted something that set the limits of what was allowable speech. Groves and his representatives (namely Henry Smyth and Richard Tolman) devised the first declassification criteria for nuclear weapons in deciding what to allow into the report and what not to. Groves was concerned about secret details, but not the big picture (e.g., which methods of producing fissile material had worked and how they roughly worked), which he thought would be too easy to learn from newspaper accounts. There were those even at the time who criticized this approach, since it is the big picture that might provide the roadmap to a bomb, and the details would emerge to anyone who started on that journey.

The Soviets, in any case, quickly translated the Smyth Report into Russian. The Russian Smyth Report is a very faithful and careful translation. The American physicist Arnold Kramish reviewed it in 1948, and noticed that the Soviets managed to produce a document that showed they were paying very close attention to the original — specifically, that they had multiple editions of the Smyth Report, and noticed differences. The first edition of the Smyth Report was a lithoprint created by the Army, and only around 1,000 copies were printed and released a few days after the bombing of Nagasaki. A spiffed-up edition was published by Princeton University Press, under the title Atomic Energy for Military Purposes, in September 1945. Most of the differences between the two editions are cosmetic, like using full names for scientists instead of initials. In a few places, there are minor additions to the Princeton University Press edition.1

Now you see it, now you don't... comparing the sections on "pile poisoning" in the original lithograph edition of the Smyth Report (top) and the later version published by Princeton University Press (bottom) reveals the omission of a crucial sentence that indicates that this problem was not merely a theoretical one.

Now you see it, now you don't... comparing the sections on "pile poisoning" in the original lithograph edition of the Smyth Report (top) and the later version published by Princeton University Press (bottom) reveals the omission of a crucial sentence that indicates that this problem was not merely a theoretical one. (Note: the top image is a composite of a paragraph that runs across two pages, which is why the font weight changes in a subtle way.)

But there is at least one instance of the Manhattan Project personnel deciding to remove something from the later edition. The major one noted by Kramish is what was called the "poisoning" problem. In the lithoprint version of the Smyth Report that was released in August 1945, there was a paragraph about a problem they had in the Hanford piles:

Even at the high power level used in the Hanford piles, only a few grams of U-238 and of U-235 are used up per day per million grams of uranium present. Nevertheless the effects of these changes are very important. As the U-235 is becoming depleted, the concentration of plutonium is increasing. Fortunately, plutonium itself is fissionable by thermal neutrons and so tends to counterbalance the decrease of U-235 as far as maintaining the chain reaction is concerned. However, other fission products are being produced also. These consist typically of unstable and relatively unfamiliar nuclei so that it was originally impossible to predict how great an undesirable effect they would have on the multiplication constant. Such deleterious effects are called poisoning. In spite of a great deal of preliminary study of fission products, an unforeseen poisoning effect of this kind very nearly prevents operation of the Hanford piles, as we shall see later.

Reactor "poisoning" refers to the fact that certain fission products created by the fission process can make further fissioning difficult. There are several problematic isotopes for this. There are ways to compensate for the problem (namely, run the reactor at higher power), but it caused some anxiety in the early trials of the B-Reactor. The question of whether to include a reference to this was considered a "borderline" secret by Groves when Smyth was writing the report, but it got added in. Apparently someone had second thoughts after it was released, and so the sentence I've put in italics in the quote above was deleted from the Princeton University Press edition. The Russian Smyth Report claimed to be — and shows evidence of — having used the Princeton University Press edition as its main reference. However, that particular sentence about poisoning shows up in the Russian edition, word-for-word.2

"Atomic Energy for Military Purposes," first edition of the Soviet Smyth Report translation made by G.M. Ivanov and published by the State Railway Transportation Publishing House, 1946. Source.

"Atomic Energy for Military Purposes," first edition of the Soviet Smyth Report translation made by G.M. Ivanov and published by the State Railway Transportation Publishing House, 1946. Source.

Kramish concluded:

I think it is significant in that here we have evidence that at least one Soviet technical man has screened the Smyth Report in great detail and it is very unlikely that some of the references which we have hoped "maybe they won't notice" have not been noticed. With particular regard to the statement that fission product poisoning very nearly prevents the operation of the Hanford piles, we must realize that that information most certainly has been compromised.3

This serves as a wonderful example of a very common principle in secrecy: if someone notices you trying to keep a secret, you will serve to draw more attention to what you are trying to hide.

But who read the Russian Smyth Report? I mean, other than the people actually participating in the Soviet atomic bomb project. Apparently it was published and available quite widely in the Soviet Union, which is an interesting fact in and of itself. One imagines that the American works that were chosen to be translated into Russian and mass-published must have been pretty selective during the Stalin years; a report about the United State's atomic energy triumphs made the grade, for whatever reason.

Solzhenitsyn's Gulag mugshot from 1953. Source: Gulag Archipelago, scanned version from

Solzhenitsyn's Gulag mugshot from 1953. Source: Gulag Archipelago, scanned version from

Which brings me to the event that got me thinking about the Russian Smyth Report again. For the past few years, on and off, I've been making my way through the unabridged edition of Aleksandr Solzhenitsyn's Gulag Archipelago. It's a long work, and historians take it with a grain of salt (it is not a work of academic history to say the least), but I find it fascinating, at times darkly humorous, at times shocking. Some of the chapters are skimmable (Solzhenitsyn has axes to grind that mean little to me at this point — e.g. against specific Soviet-era prosecutors). But occasionally there are just some really unexpected and surprising little anecdotes. And one of those involves the Smyth Report.

Timofeev-Ressovsky. Source.

Timofeev-Ressovsky. Source.

At one point, Solzhenitsyn talks about his time in the Butyrskaya prison, a "hub" for transferring Gulag prisoners between different camps, albeit one that it was (in Solzhenitsyn's account) easy to get "stuck" in while they were figuring out what to do with you (and perhaps forgetting about you). Shortly after he arrived, he was approached by "a man who was middle-aged, broad-shouldered yet very skinny, with a slightly aquiline nose." The man, another prisoner, introduced himself: "[I am] Professor Timofeyev-Ressovsky, President of the Scientific and Technical Society of Cell 75. Our society assembles every day after the morning bread ration, next to the left window. Perhaps you could deliver a scientific report to us? What precisely might it be?" He was none other than the eminent biologist and geneticist Nikolai Timofeev-Ressovsky, a victim of Lysenkoism who had taken up a post in Germany before the rise of the Nazis, been re-captured in the Soviet invasion, and thrown into prison. Timofeev-Ressovsky, though not a name that rolls of the tongue today, was one of the most famous Russian biologists of his time, and one of the world experts on the biological effects of ionizing radiation. And, true to form, he had organized a science seminar in his cell while in Butyrskaya.

Solzhenitsyn continued:

Caught unaware, I stood before him in my long bedraggled overcoat and winter cap (those arrested in winter are foredoomed to go about in winter clothing during the summer too). My fingers had not yet straightened out that morning and were all scratched. What kind of scientific report could I give? And right then I remembered that in camp I had recently held in my hands for two nights the Smyth Report, the official report of the United States Defense Department on the first atom bomb, which had been brought in from outside. The book had been published that spring. Had anyone in the cell seen it? It was a useless question. Of course no one had. And thus it was that fate played its joke, compelling me, in spite of everything, to stray into nuclear physics, the same field in which I had registered on the Gulag card.4

After the rations were issued, the Scientific and Technical Society of Cell 75, consisting of ten or so people, assembled at the left window and I made my report and was accepted into the society. I had forgotten some things, and I could not fully comprehend others, and Timofeyev-Ressovsky, even though he had been in prison for a year and knew nothing of the atom bomb, was able on occasion to fill in the missing parts of my account. An empty cigarette pack was my blackboard, and I held an illegal fragment of pencil lead. Nikolai Vladimirovich took them away from me and sketched and interrupted, commenting with as much self-assurance as if he had been a physicist from the Los Alamos group itself.5

What are the odds of all of this having happened? The Smyth Report itself was pretty improbable. The Soviets deciding to publish it themselves strikes me as unpredictable. That Solzhenitsyn would run across it in a camp seems entirely fortuitous. And finally, that Solzhenitsyn would be the one who would end up explaining it to Timofeyev-Ressovsky, an expert on the radiation effects, seems like a coincidence that a writer would abhor — it's just too unlikely.

And yet, sometimes history lines up in peculiar ways, does it not? I am sure it never occurred to Smyth, or to Groves, that the report would end up being much-sought-after Gulag reading.

  1. On the publication history of the Smyth Report, see both H.D. Smyth, "The 'Smyth Report'," and Datus C. Smith, Jr., "The Publishing History of the 'Smyth Report,'" both in Princeton University Library Chronicle 37, no. 3 (Spring 1976), 173-190, 191-203, respectively. For a copy of the lithograph version of the report, see the Manhattan District History, Book 1, Vol. 4, Chapter 8, Part 2. A scanned copy of the Princeton University Press edition is available on []
  2. "Несмотря на большое количество предварительных исследований продуктов деления, непредвиденный отравляющий эффект такого рода едва не заставил приостановить работы в Хэнфорде, с чем мы встретимся позднее." A transcribed copy of the Russian Smyth Report can be found online here.) Cf. Henry D. Smyth, Atomic Energy for Military Purposes (Princeton University Press, 1945), 135, and paragraph 8.15 in the lithograph edition. []
  3. Arnold Kramish to H.A. Fidler, "Russian Smyth Report," (18 September 1948), in Richard C. Tolman Papers, Caltech Institute Archives, Pasadena, California, Box 5, Folder 4. []
  4. Solzhenitsyn recorded his "occupation" as "nuclear physicist" on his Gulag registration card on a whim, despite knowing nothing about nuclear physics. Elsewhere in the book he refers to nuclear physics as the kind of intellectual "hobby" that one who was not engaged with the world might think about, not realizing the horrors that lurked behind the curtain of Soviet society. The presence of nuclear themes in Solzhenitsyn's work is probably fodder for a Slavic studies article. []
  5. Aleksandr I. Solzhenitsyn, The Gulag Archipelago 1918-1956: An Experiment in Literary Investigation, I-II, Thomas P. Whitney, trans. (New York: Harper and Row, 1974), 598-599. []

Nuclear history bibliography, 2015

Friday, February 5th, 2016

It's (roughly) that time of the year again: my annual nuclear history bibliography for the previous year. (It's a little later than usual this time around, but I've been busy teaching and writing.) The game is more or less the same as it was for 2014, 2013, and 2012: I've tried to compile any and all references to scholarly or at least semi-scholarly articles and books I've founded that were published in 2015 that would be relevant and of interest to those people (like myself) who consider themselves interested in "nuclear history," construed broadly. As before, I've avoided listing websites (except the Electronic Briefing Bulletins of the National Security Archive, because they are a really uniquely valuable form of "publication"), have avoided anything that was simply an updated edition of a book published prior to 2015, and have stuck mostly to scholarly articles (with my own publications being an exception, because, well, I made the list).

The hands of the censor: Charles L. Marshall, Director of Classification, declassifying a document as part of the Atomic Energy Commission's 1971-1976 "declassification drive." Source: Nuclear Testing Archive. Click for the uncropped version.

The hands of the censor: Charles L. Marshall, Director of Classification, declassifying a document as part of the Atomic Energy Commission's 1971-1976 "declassification drive." Click the image for the full-sized version. Source: Nuclear Testing Archive, Las Vegas, Nevada, document NV0148015.

This list is no doubt missing a lot, but it's a start. If you think I missed something, or think something ought not be on here, add it as a comment below (comments that are just references will be read but probably not "approved" — consider them just a way to send me a quick message). I have not read the vast majority of the references below (one only has so much time...), and do not vouch for them in any way. In most cases, I've just glanced enough to confirm that they seem to have a historical component that relates to nuclear technology.

The list was compiled by (tediously) searching through broad keyword searches in a variety of online databases, along with looking at the titles and abstracts of specific journals that are known to carry a lot of this sort of thing.

In the past, it has usually taken about a week for this list to fully stabilize, as people remind me of all the things I've missed. So check back then if you want the most up-to-date version. (I will also update the 2014 bibliography at the same time, with a few extra references I found.) At that point, I will also post the bibtex and RIS version for those who want to import these into a citation manager. Note that some of the processing below is done mechanically (I export from Zotero then use PHP to clean up the links/etc. because it is easier than figuring out how to modify Zotero's internal style sheets), so there may be a few weird little bugs related to that here and there.

And if you're bored to death by bibliographies — don't worry. I'm starting up the regular blog posts again next week.

See the bibliography by clicking here