Posts Tagged ‘1940s’

Redactions

The blue flash

Monday, May 23rd, 2016

This last weekend was the 70th anniversary of Louis Slotin’s criticality accident. One slip of a screwdriver; a blue flash and wave of heat; and Slotin had a little over a week to live. It’s a dramatic story, one that has been told before. I tried to give it a little bit of a fresh look in my latest piece for the New Yorker’s Elements Blog: “The Demon Core and the Strange Death of Louis Slotin.”1

Demon Core New Yorker Screenshot

In researching the piece, I looked over a lot of technical literature on the accident, as well as numerous accounts from others who were in the room at the time. A few things stuck out to me that didn’t make it into the piece. One was that it was remarkably non-secret for the time. Los Alamos put out a press release almost immediately after it happened (by May 25th, five days before Slotin’s death, it was in national newspapers), and followed it up with more after Slotin’s death. For mid-1946, when the Atomic Energy Act had not yet been signed and the future of the American nuclear infrastructure was still very much in question, it was remarkably transparent. The press release was where I saw the phrase “three-dimensional sunburn” for the first time.

I also went over the account of Slotin’s case that was published in The Annals of Internal Medicine in 1952.2 Slotin isn’t named, but he’s clearly “Case 3.” Harry Daghlian, who also died from an accident with the same core, is “Case 1,” and Alvin Graves, who was the nearest person to Slotin during his accident, and later became a director of US nuclear weapons testing, is “Case 2.” The article is long and technical, and ends with some of the most disturbing photographs I have ever seen of the Daghlian and Slotin accidents. There is a photo of Daghlian’s hand that has been reproduced many places (including in Rachel Fermi’s Picturing the Bomb), but I’d only previously seen it in black and white. It is much worse in color — the contrast between the white blistered skin and the pink-red stuff under the cut-away area is dramatic and disturbing. There are others in the same series that are just as bad if not worse: blackened, gangrenous fingers. Slotin’s photos in that article are comparatively tame but still pretty unsettling. Blisters. Cyanotic tissue. A photograph of his left hand — the one that was closest to the reacting core — on the ninth day of treatment (his last day alive) looks almost corpselike, or even claw-like. It is unsettling. I will not post it here.

An anonymous e-mail tipped me off that there were more photographs, and more documents, at a collection at the New York Public Library. These were part of a collection deposited by Paul Mullin, who authored the Louis Slotin Sonata, a very interesting, very curious play about Slotin from the late 1990s. I haven’t seen the play, though I had seen mentions of it for awhile. Mullin’s materials were fascinating and very useful. There were two boxes. The first was mostly notes relating to the creation of the play. It is always interesting to see how another researcher takes notes, much less one whose end-product (a play) is very different from the sort of thing I do. It does not take much glancing at his notes to see that Mullin got as deep into this topic as anyone has. The second box contained research materials: four folders of documents obtained from Los Alamos under the Freedom of Information Act, and a folder of photographs.

The hands of Louis Slotin, shortly after admission to the Los Alamos hospital. Source: Los Alamos National Laboratory, via the New York Public Library (Paul Mullin papers on the Louis Slotin Sonata).

The hands of Louis Slotin, shortly after admission to the Los Alamos hospital. Source: Los Alamos National Laboratory, via the New York Public Library (Paul Mullin papers on the Louis Slotin Sonata).

The photographs were, well, terrible. They included the ones from the Annals of Internal Medicine article, but also many more. Some showed Slotin naked, posing with his injuries. The look on his face was tolerant. There were a few more of his hand injuries, and then the time skips: internal organs, removed for autopsy. Heart, lungs, intestines, each arranged cleanly and clinically. But it’s jarring to see photographs of him on the bed, unwell but alive, and then in the next frame, his heart, neatly prepared. The photo above, of just his hands, is one of the tamest of the bunch, though in some sense, one of the saddest (there is a helplessness, almost like begging, in the position). I didn’t make copies of the really awful ones. History is often very voyeuristic — I joke with students that I read dead people’s mail for a living — but, as I commiserated with Mullin over Twitter, at some point you start to almost feel complicit, as silly as that notion is.

The documents were invaluable. They mostly covered the period immediately after the accident — people checking in on Slotin’s health, the complicated legal aspects of dealing with the death of a scientist (and with his distraught family), the questions of what to do next. An inordinate amount of paperwork was generated in dealing with the disposition of Slotin’s automobile (a 1942 Dodge Custom Convertible Coupe). The Army’s interactions with Slotin’s family appeared sympathetic and generous. There appears to have been no cloak-and-dagger regarding the entire affair. Slotin was, after all, a friend to many of those at Los Alamos, and a key member of their “pit crew.”

One of the accounts that I found most fascinating was that of the security guard, Patrick Cleary, who was in the room when the accident happened. Cleary was there because you don’t just keep a significant proportion of the nation’s fissile material stockpile unguarded. He seems to have understood little about what risks his job entailed, though:

When the accident occurred, I saw the blue glow and felt a heat wave. I knew something was wrong, but didn’t know exactly what it was, when I saw the blue glow and somebody yelled. … Our instructions are also to keep in sight of all active material that is around, except in the case of a critical assembly, but [I] am not sure about that. I did not actually know what the material or sphere was at the time, or anything about it.3

When Cleary saw the flash and heard yelling, he literally took off for the hills, running. He was called back, as the scientists tried to reconstruct where people were standing for the purposes of dosage calculation. Cleary, in fact, was the last person to leave, because security guards can’t walk off the job — he had to wait until a replacement came.

Close-in shot on the Slotin accident re-creation. The beryllium tamper is on top; the plutonium core is the smaller sphere in the center. Notice in this particular shot, they have a "shim" on the right. Slotin removed the shim right before his fatal slip.

Close-in shot on the Slotin accident re-creation. The beryllium tamper/reflector (they called it a tamper) is on top; the plutonium core is the smaller sphere in the center. Notice in this particular shot, they have a “shim” on the right. Slotin removed the shim right before his fatal slip. The scientist re-creating the photograph is physicist Chris Wright. I wonder if they took extra precautions in making this particular set of photos?

For a long time I had been wondering what happened to the so-called “demon core,” which was also known as “Rufus,” something that strikes me as just too strange to be anything but true. It has been reported many times that it was used at Operation Crossroads, at the Able shot. I found some documentation that suggested this was very unlikely. For example, shortly after the accident (Slotin was still alive), lab directory Norris Bradbury wrote to a few other scientists at Los Alamos about how the accident had affected the forthcoming Crossroads tests. He notes that the sphere in question was getting “its final check” during the accident — so it was definitely slated for Crossroads. But he continues:

Obviously Slotin will not come to Bikini. [Raemer] Schreiber will come although the date of special shipment was postponed one week to allow us to pull ourselves together. Only two shipments will be made at this time as I see no courier for the third. The sphere in question is OK although still a little hot but not too hot to handle. We will save it for the last in any event if it is needed at all.4

Which seemed pretty suggestive to me that they weren’t going to use it: only two shipments were going to be made early on, and “the sphere in question” was not one of them. It would be saved for the “last event.” Which in this case was the “Charlie” shot — which was cancelled.

I wanted some more confirmation, though, because a plan isn’t always a reality. I e-mailed John Coster-Mullen, who I knew had done a lot of research into the Slotin and Daghlian accidents. (John is the one that provided me with these wonderful high-resolution photographs of the Slotin re-enactment, and some of the documents in his appendices to Atom Bombs were very useful for this research.) John suggested I get in touch with Glenn McDuff, a retired scientist at Los Alamos who was also one of the consultants on Manhattan (he drew the equations on the chalkboards, among other things). This turned out to be a great tip: Glenn has been working on an article about the fate of the first eight cores. There is much still to be declassified, but he was able to share with me the fate of the core in question: it had not been used at Crossroads, it had been melted down and the material re-used in another core. Glenn says there was no particular reason it was melted down. It was old, as far as cores went, and they were constantly fiddling with them in those days — the days in which they still gave bomb cores individual nicknames, because there were so few of them.

For nuke nerds, this is the big “reveal” of my New Yorker piece, the one thing that even someone very steeped in Los Alamos history probably doesn’t know. (For non-nuke nerds, I doubt it registers as much!) And even though it is a bit anticlimactic, I actually prefer it to the version that the core was detonated shortly after the accident. The part about them immediately re-using the core in a weapon just always seemed a little suspicious to me — it almost implied that they had done it due to superstition, and that didn’t really jibe with my sense of how these scientists viewed the accident or these weapons. And even the anticlimax has a bit of a literary touch to it: the “demon core” wasn’t expended in a flash, it was melted down and reintegrated with the stockpile. Who knows whether bits of its plutonium ended up in other weapons over the years, whether any of that core is still with us in the current arsenal? There’s perhaps something even a bit more “demonic” about this version of the story.

Notes
  1. A few small errata to the piece, based on a few questions I got: 1. Should the beryllium hemisphere be called a tamper or a reflector? In most contexts today we would call it a neutron reflector, because that’s the property that you use beryllium for in a bomb (a tamper’s job, generally, is to hold the core together as long as possible while it reacts, and so heavy, dense metals like uranium are used). But in this case, the scientists at the time referred to it universally as a “beryllium tamper” so the editor and I just decided to keep things simple and call it that, rather than call it a “reflector” and then clarify that it was the same thing as the “tamper” that was cited in the quotes. (This is the kind of linguistic hair-splitting that goes into these pieces — a balance between the historical language, the present-day language, the technical aspects, etc. We try to come to sensible decisions.) 2. At one point, it refers to the “pits” at Hiroshima and Nagasaki. This is just meant in a colloquial way here to refer to their fissile material cores. The Hiroshima bomb of course was a different design, made of two different pieces, called the Projectile and the Target in the documents at the time. It seemed unnecessary to introduce all that complexity to make a point that they didn’t give it any kind of colorful moniker. 3. There was one legitimate typo in the piece as published, which was my fault. It misstated the amount of time between the Daghlian and Slotin accidents (three months instead of nine). I’m not sure how that got in there — I actually re-looked up the date differences at the time I wrote it, and know the months cold. One of those strange disconnects between the head and the fingers, I suppose, and somehow I missed it in re-reading the drafts. Very frustrating! It’s the little things you aren’t worried about getting wrong that can get you, in the end. It has been fixed. []
  2. Louis H. Hempelmann, Hermann Lisco, and Joseph G. Hoffmann, “The Acute Radiation Syndrome: A Study of Nine Cases and a Review of the Problem,” Annals of Internal Medicine 36, no. 2 (February 1952), Part 1, 279-510. []
  3. Patrick Cleary, account of the Slotin accident (29 May 1946). Copy in the Paul Mullin, “Production materials for the Louis Slotin Sonata, 1946-2006,” New York Public Library. []
  4. Norris Bradbury to Marshall Holloway and Roger Warner (undated, ca. 24-29 May 1946). Copy in the Paul Mullin, “Production materials for the Louis Slotin Sonata, 1946-2006,” New York Public Library. []
Visions

Silhouettes of the bomb

Friday, April 22nd, 2016

You might think of the explosive part of a nuclear weapon as the “weapon” or “bomb,” but in the technical literature it has its own kind of amusingly euphemistic name: the “physics package.” This is the part of the bomb where the “physics” happens — which is to say, where the atoms undergo fission and/or fusion and release energy measured in the tons of TNT equivalent.

Drawing a line between that part of the weapon and the rest of it is, of course, a little arbitrary. External fuzes and bomb fins are not usually considered part of the physics package (the fuzes are part of the “arming, fuzing, and firing” system, in today’s parlance), but they’re of course crucial to the operation of the weapon. We don’t usually consider the warhead and the rocket propellant to be exactly the same thing, but they both have to work if the weapon is going to work. I suspect there are many situations where the line between the “physics package” and the rest of the weapon is a little blurry. But, in general, the distinction seems to be useful for the weapons designers, because it lets them compartmentalize out concerns or responsibilities with regards to use and upkeep.

Physics package silhouettes of some of the early nuclear weapon variants. The Little Boy (Mk-1) and Fat Man (Mk-3) are based on the work of John Coster-Mullen. All silhouette portraits are by me — some are a little impressionistic. None are to any kind of consistent scale.

The shape of nuclear weapons was from the beginning one of the most secret aspects about them. The casing shapes of the Little Boy and Fat Man bombs were not declassified until 1960. This was only partially because of concerns about actual weapons secrets — by the 1950s, the fact that Little Boy was a gun-type weapon and Fat Man was an implosion weapon, and their rough sizes and weights, were well-known. They appear to have been kept secret for so long in part because the US didn’t want to draw too much attention to the bombing of the cities, in part because we didn’t want to annoy or alienate the Japanese.

But these shapes can be quite suggestive. The shapes and sizes put limits on what might be going on inside the weapon, and how it might be arranged. If one could have seen, in the 1940s, the casings of Fat Man and Little Boy, one could pretty easily conjecture about their function. Little Boy definitely has the appearance of a gun-type weapon (long and relatively thin), whereas Fat Man clearly has something else going on with it. If all you knew was that one bomb was much larger and physically rounder than the other, you could probably, if you were a clever weapons scientist, deduce that implosion was probably going on. Especially if you were able to see under the ballistic casing itself, with all of those conspicuously-placed wires.

In recent years we have become rather accustomed to seeing pictures of retired weapons systems and their physics packages. Most of them are quite boring, a variation on a few themes. You have the long-barrels that look like gun-type designs. You have the spheres or spheres-with-flat ends that look like improved implosion weapons. And you then have the bullet-shaped sphere-attached-to-a-cylinder that seems indicative of the Teller-Ulam design for thermonuclear weapons.

Silhouettes of compact thermonuclear warheads. Are the round ends fission components, or spherical fusion components? Things the nuke-nerds ponder.

There are a few strange things in this category, that suggest other designs. (And, of course, we don’t have to rely on just shapes here — we have other documentation that tells us about how these might work.) There is a whole class of tactical fission weapons that seem shaped like narrow cylinders, but aren’t gun-type weapons. These are assumed to be some form of “linear implosion,” which somewhat bridges the gap between implosion and gun-type designs.

All of this came to mind recently for two reasons. One was the North Korean photos that went around a few weeks ago of Kim Jong-un and what appears to be some kind of component to a ballistic case for a miniaturized nuclear warhead. I don’t think the photos tell us very much, even if we assume they are not completely faked (and with North Korea, you never know). If the weapon casing is legit, it looks like a fairly compact implosion weapon without a secondary stage (this doesn’t mean it can’t have some thermonuclear component, but it puts limits on how energetic it can probably be). Which is kind of interesting in and of itself, especially since it’s not every day that you get to see even putative physics packages of new nuclear nations.

Stockpile milestones chart from Pantex's website. Lots of interesting little shapes.

Stockpile milestones chart from Pantex’s website. Lots of interesting little shapes.

The other reason it came to mind is a chart I ran across on Pantex’s website. Pantex was more or less a nuclear-weapons assembly factory during the Cold War, and is now a disassembly factory. The chart is a variation on one that has been used within the weapons labs for a few years now, my friend and fellow-nuclear-wonk Stephen Schwartz pointed out on Twitter, and shows the basic outlines of various nuclear weapons systems through the years. (Here is a more up-to-date one from the a 2015 NNSA presentation, but the image has more compression and is thus a bit harder to see.)

For gravity bombs, they tend to show the shape of the ballistic cases. For missile warheads, and more exotic weapons (like the “Special Atomic Demolition Munitions,” basically nuclear land mines — is the “Special” designation really necessary?), they often show the physics package. And some of these physics packages are pretty weird-looking.

Some of the weirder and more suggestive shapes in the chart. The W30 is a nuclear land mine; the W52 is a compact thermonuclear warhead; the W54 is the warhead for the Davy Crockett system, and the W66 is low-yield thermonuclear weapon used on the Sprint missile system.

A few that jump out as especially odd:

  • PowerPoint Presentation

    Is the fill error meaningful, or just a mistake? Can one read too much into a few blurred pixels?

    In the Pantex version (but not the others), the W59 is particular in that it has an incorrectly-filled circle at the bottom of it. I wonder if this is an artifact of the vectorization process that went into making these graphics, and a little more indication of the positioning of things than was intended.

  • The W52 has a strange appearance. It’s not clear to me what’s going on there.
  • The silhouette of the W30 is a curious one (“worst Tetris piece ever” quipped someone on Twitter), though it is of an “Atomic Demolition Munition” and likely just shows some of the peripheral equipment to the warhead.
  • The extreme distance between the spherical end (primary?) and the cylindrical end (secondary?) of the W-50 is pretty interesting.
  • The W66 warhead is really strange — a sphere with two cylinders coming out of it. Could it be a “double-gun,” a gun-type weapon that decreases the distance necessary to travel by launching two projectiles at once? Probably not, given that it was supposed to have been thermonuclear, but it was an unusual warhead (very low-yield thermonuclear) so who knows what the geometry is.

There are also a number of warheads whose physics packages have never been shown, so far as I know. The W76, W87, and W88, for example, are primarily shown as re-entry vehicles (the “dunce caps of the nuclear age” as I seem to recall reading somewhere). The W76 has two interesting representations floating around, one that gives no real feedback on the size/shape of the physics package but gives an indication of its top and bottom extremities relative to other hardware in the warhead, another that portrays a very thin physics package that I doubt is actually representational (because if they had a lot of extra space, I think they’d have used it).1

Some of the more simple shapes — triangles, rectangles, and squares, oh my!

Some of the more simple shapes — triangles, rectangles, and squares, oh my!

What I find interesting about these secret shapes is that on the one hand, it’s somewhat easy to understand, I suppose, the reluctance to declassify them. What’s the overriding public interest for knowing what shape a warhead is? It’s a hard argument to make. It isn’t going to change how to vote or how we fund weapons or anything else. And one can see the reasons for keeping them classified — the shapes can be revealing, and these warheads likely use many little tricks that allow them to put that much bang into so compact a package.

On the other hand, there is something to the idea, I think, that it’s hard to take something seriously if you can’t see it. Does keeping even the shape of the bomb out of public domain impact participatory democracy in ever so small a way? Does it make people less likely to treat these weapons as real objects in the world, instead of as metaphors for the end of the world? Well, I don’t know. It does make these warheads seem a bit more out of reach than the others. Is that a compelling reason to declassify their shapes? Probably not.

As someone on the “wrong side” of the security fence, I do feel compelled to search for these unknown shapes — a defiant compulsion to see what I am not supposed to see, perhaps, in an act of petty rebellion. I suspect they look pretty boring — how different in appearance from, say, the W80 can they be? — but the act of denial makes them inherently interesting.

Notes
  1. One amusing thing is that several sites seem to have posted pictures of the arming, fuzing, and firing systems of these warheads under the confusion that these were the warheads. They are clearly not — they are not only too small in their proportions, but they match up exactly to declassified photos of the AF&F systems (they are fuzes/radars, not physics packages). []
Meditations

Maintaining the bomb

Friday, April 8th, 2016

We hear a lot about the benefits of “innovation” and “innovators.” It’s no small wonder: most of the stories we tell about social and technological “progress” are about a few dedicated people coming up with a new approach and changing the world. Historians, being the prickly and un-fun group that we are, tend to cast a jaundiced eye at these kinds of stories. Often these kinds of cases ignore the broader contextual circumstances that were required for the “innovation” to appear or take root, and often the way these are told tend to make the “innovator” seem more “out of their time” than they really were.

The "logo" of the Maintainers conference, which graces its T-shirts (!) and promotional material. I modeled the manhole design off of an actual manhole cover here in Hoboken (photograph taken by me).

The “logo” of the Maintainers conference, which graces its T-shirts (!) and promotional material. I modeled the manhole design off of an actual manhole cover here in Hoboken (photograph taken by me).

Two of my colleagues (Andy Russell and Lee Vinsel) at the Science and Technology Studies program here at the Stevens Institute of Technology (official tagline: “The Innovation University“) have been working on an antidote to these “innovation studies.” This week they are hosting a conference called “The Maintainers,” which focuses on an alternative view of the history of technology. The core idea (you can read more on the website) is that the bulk of the life and importance of a technology is not in its moment of “innovation,” but in the “long tail” of its existence: the ways in which it gets integrated into society, needs to be constantly repaired and upgraded, and can break down catastrophically if it loses its war against entropy. There is a lot of obvious resonance with infrastructure studies and stories in the news lately about what happens if you don’t repair your water systems, bridges, subway trains, and you-name-it.1

I’ve been thinking about how this approach applies to the history and politics of nuclear weapons. It’s pretty clear from even a mild familiarity with the history of the bomb that most of the stories about it are “innovation” narratives. The Manhattan Project is often taken as one of the canonical cases of scientific and technological innovation (in ways that I find extremely misleading and annoying). We hunger for those stories of innovation, the stories of scientists, industry, and the military coming together to make something unusual and exciting. When we don’t think the weapons-acquisition is a good idea (e.g., in the Soviet Union, North Korea, what have you), these innovation stories take on a more sinister tone or get diluted by allusions to espionage or other “help.” But the template is the same. Richard Rhodes’ The Making of the Atomic Bomb is of course one of the greatest works of the innovation narrative of the atomic bomb, starting, as it does, with a virtual lightning bolt going off in the mind of Leo Szilard.2

How do you service a Titan II? Very carefully. This is a RFHCO suit, required for being around the toxic fuel and oxidizer. Not the most comfortable of outfits. From Penson's Titan II Handbook.

How do you service a Titan II missile? Very carefully. This is a RFHCO suit, required for being around the toxic fuel and oxidizer. Not the most comfortable of outfits. From Penson’s Titan II Handbook.

What would a history of the bomb look like if we focused on the question of “maintenance”? We don’t have to guess, actually: one already exists. Eric Schlosser’s Command and Control, which I reviewed on here and for Physics Today a few years ago, can be read in that light. Schlosser’s book is about the long-term work it takes to create a nuclear-weapons infrastructure, both in terms of producing the weapons and in terms of making sure they are ready to be used when you want them to be. And, of course, it’s about what can go wrong, either in the course of routine maintenance (the central case-study is that of a Titan II accident that starts when a “maintainer” accidentally drops a socket wrench) or just in the haphazard course of a technology’s life and interactions with the physical world (dropped bombs, crashed planes, things that catch on fire, etc.). (A documentary film based on Schlosser’s book premieres at the Tribeca Film festival this month, along with what sounds like a nuclear rave.)

There are other approaches we might fold into the “maintenance” of the bomb. Donald MacKenzie’s Inventing Accuracy uses the trope of invention, but the meat of the book is really about the way uncertainty about performance and reliability moved between the domains of engineering and policy. Hugh Gusterson’s anthropological study of the Livermore laboratory, Nuclear Rites, is particularly astute about the questions of the day-to-day work at a weapons laboratory and who does it. And the maintenance of infrastructure is a major sub-theme of Stephen Schwartz‘s classic edited volume on the costs of the nuclear complex, Atomic AuditBut these kinds of studies are, I think, rarer than they ought to be — we (and I include myself in this) tend to focus on the big names and big moments, as opposed to the slow-grind of the normal. 

There are two historical episodes that come to my mind when I think about the role of “maintenance” in the history of nuclear weapons. Non-coincidentally, both come at points in history where big changes were in the making: the first right after World War II ended, the second right after the Cold War ended.

Episode 1: The postwar slump

From the very beginning, the focus on the bomb was about its moment of creation. Not, in other words, on what it would take to sustain a nuclear complex. In our collective memory, a “Manhattan Project” is a story of intense innovation and creative invention against all odds. But there’s a lesser-known historical lesson in what happened right after the bombs went off, and it’s worth keeping in mind anytime someone invokes the need for another “Manhattan Project.”

The Manhattan Project, formally begun in late 1942, was consciously an effort to produce a usable atomic bomb in the shortest amount of time possible. It involved massive expenditure, redundant investigations, and involved difficult trade-offs between what would normally considered “research” and “development” phases. Plans for the first industrial-sized nuclear reactors, for example, were developed almost immediately after the first proof-of-concept was shown to work — normal stages of prototyping, scaling, and experimenting were highly compressed from normal industrial practices at the time, a fact noted by the engineers and planners who worked on the project. The rush towards realization of the new technology drove all other concerns. The nuclear waste generated by the plutonium production processes, for example, were stored in hastily-built, single-walled underground tanks that were not expected to be any more than short-term, wartime solutions.3 When people today refer to the Manhattan Project as a prototypical case of “throw a lot of money and expertise at a short-term problem,” they aren’t entirely wrong (even though such an association leaves much out).

J. Robert Oppenheimer (at right) was proud face of the successful "innovation" of the Manhattan Project. It is telling, though, that he left Los Alamos soon after the war ended. Source: Google LIFE image archive.

J. Robert Oppenheimer (at right) was proud face of the successful “innovation” of the Manhattan Project. It is telling, though, that he left Los Alamos soon after the war ended. Source: Google LIFE image archive.

After the end of World War II, though, the future of the American nuclear complex was uncertain. In my mind this liminal period is as interesting as the wartime period, though it doesn’t get as much cultural screen time. Would the US continue to make nuclear weapons? Would there be an agreement in place to limit worldwide production of nuclear arms (international control)? Would the atomic bomb significantly change US expenditures on military matters, or would it become simply another weapon in the arsenal? What kind of postwar organization would manage the wartime-creations of the Manhattan Project? No one knew the answers to these questions — there was a swirl of contradictory hopes and fears held by lots of different stakeholders.

We know, in the end, what eventually worked out. The US created the civilian Atomic Energy Commission with the Atomic Energy Act of 1946, signed by President Truman in August 1946 (much later than the military had hoped). Efforts towards the “international control” of the atomic bomb fizzled out in the United Nations. The Cold War began, the arms race intensified, and so on.

But what’s interesting to me, here, is that period between the end of the war and things “working out.” Between August 1945 and August 1946, the US nuclear weapons infrastructure went into precipitous decline. Why? Because maintaining it was harder than building it in the first place. What needed to be maintained? First and foremost, there were issues in maintaining the human capital. The Manhattan Project was a wartime organization that dislocated hundreds of thousands of people. The working conditions were pretty rough and tumble — even during the war they had problems with people quitting as a result of them. When the war ended, a lot of people went home. How many? Exact numbers are hard to come by, but my rough estimate based on the personnel statistics in the Manhattan District History is that between August 1945 and October 1946, some 80% of the construction labor left the project, and some 30% of the operations and research labor left. Overall there was a shedding of some 60% of the entire Manhattan Project labor force.

Declines in Manhattan Project personnel from July 1945 through December 1946. Note the dramatic decrease between August and September 1945, and the slow decrease until October 1946, after the Atomic Energy Act was passed and when things started to get on a postwar footing (but before the Atomic Energy Commission fully took over in January 1947).

Declines in Manhattan Project personnel from July 1945 through December 1946. Note the dramatic decrease between August and September 1945, and the slow decrease until October 1946, after the Atomic Energy Act was passed and when things started to get on a postwar footing (but before the Atomic Energy Commission fully took over in January 1947). Reconstructed from this graph in the Manhattan District History.

Now, some of that can be explained as the difference between a “building” project and a “producing” project. Construction labor was already on a downward slope, but the trend did accelerate after August 1945. The dip in operations and research, though, is more troublesome — a steep decline in the number of people actually running the atomic bomb infrastructure, much less working to improve it.

Why did these people leave? In part, because the requirements of a “crash” program and a “long-term” program were very different in terms of labor. It’s more than just the geographical aspect of people going home. It also included things like pay, benefits, and work conditions in general. During the war, organized labor had mostly left the Manhattan Project alone, at the request of President Roosevelt and the Secretary of War. Once peace was declared, they got back into the game, and were not afraid to strike. Separately, there was a prestige issue. You can get Nobel Prize-quality scientists to work on your weapons program when you tell them that Hitler was threatening civilization, that they were going to open up a new chapter in world history, etc. It’s exciting to be part of something new, in any case. But if the job seems like it is just about maintaining an existing complex — one that many of the scientists were having second-thoughts on anyway — it’s not as glamorous. Back to the universities, back to the “real” work.4

And, of course, it’s a serious morale problem if you don’t think you laboratory is going to exist in a year or two. When the Atomic Energy Act got held up in Congress for over a year, it introduced serious uncertainty as to the future of Los Alamos. Was Los Alamos solely a wartime production or a long-term institution? It wasn’t clear.

Hanford reactor energy output, detail. Note that it went down after late 1945, and they did not recover their wartime capacity until late 1948. Source: detail from this chart which I got from the Hanford Declassified Document System.

Hanford reactor energy output, detail. Note that it went down after late 1945, and they did not recover their wartime capacity until late 1948. Source: detail from this chart which I got from the Hanford Declassified Document System.

There were also technical dimensions to the postwar slump. The industrial-sized nuclear reactors at Hanford had been built, as noted, without much prototyping. The result is that there was still much to know about how to run them. B Reactor, the first to go online, started to show problems in the immediate postwar. Some of the neutrons being generated from the chain reaction were being absorbed by the graphite lattice that served as the moderator. The graphite, as a result, was starting to undergo small chemical changed: it was swelling. This was a big problem. Swelling graphite could mean that the channels that stored fuel or let the control rods in could get warped. If that happened, the operator would no longer be in full control of the reactor. That’s bad. For the next few years, B Reactor was run on low power as a result, and the other reactors were prevented from achieving their full output until solutions to the problem were found. The result is that the Hanford reactors had around half the total energy output in the immediate postwar as they did during the wartime period — so they weren’t generating as much plutonium.

To what degree were the technical and the social problems intertwined? In the case of Los Alamos we have a lot of documentation from the period which describes the “crisis” of the immediate postwar, when they were hemorrhaging manpower and expertise. We also have some interesting documentation that implies the military was worried about what a postwar management situation might look like, if it was out of the picture — if the nuclear complex was to be run by civilians (as the Atomic Energy Act specified), they wanted to make sure that the key aspects of the military production of nuclear weapons were in “reliable” hands. In any case, the infrastructure, as it was, was in a state of severe decay for about a year as these things got worked out.

I haven't even touched on the issues of "maintaining" security culture — what goes under the term "OPSEC." There is so much that could be said about that, too! Image source: (Hanford DDRS #N1D0023596)

I haven’t even touched on the issues of “maintaining” security culture — what goes under the term “OPSEC.” There is so much that could be said about that, too! Image source: (Hanford DDRS #N1D0023596)

The result of all of this was the greatest secret of the early postwar: the United States had only a small amount of fissile material, a few parts of other bomb components, and no ready-to-use nuclear weapons. AEC head David Lilienthal recalled talking with President Truman in April 1947:

We walked into the President’s office at a few moments after 5:00 p.m. I told him we came to report what we had found after three months, and that the quickest way would be to ask him to read a brief document. When he came to a space I had left blank, I gave him the number; it was quite a shock. We turned the pages as he did, all of us sitting there solemnly going through this very important and momentous statement. We knew just how important it was to get these facts to him; we were not sure how he would take it. He turned to me, a grim, gray look on his face, the lines from his nose to his mouth visibly deepened. What do we propose to do about it?5

The “number” in question was the quantity of atomic bombs ready to use in an emergency. And it was essentially zero.6 Thus the early work of the AEC was re-building a postwar nuclear infrastructure. It was expensive and slow-going, but by 1950 the US could once again produce atomic bombs in quantity, and was in a position to suddenly start producing many types of nuclear weapons again. Thus the tedious work of “maintenance” was actually necessary for the future work of “innovation” that they wanted to happen.

Episode 2: The post-Cold War question

Fast-forward to the early 1990s, and we’re once again in at a key juncture in questions about the weapons complex. The Soviet Union is no more. The Cold War is over. What is the future of the American nuclear program? Does the United States still need two nuclear weapon design laboratories? Does it still need a diverse mix of warheads and launchers? Does it still need the “nuclear triad”? All of these questions were on the table.

What shook out was an interesting situation. The labs would be maintained, shifting their efforts away from the activities we might normally associate with innovation and invention, and towards activities we might instead associate with maintenance. So environmental remediation was a major thrust, as was the work towards “Science-Based Stockpile Stewardship,” which is a fancy term for maintaining the nuclear stockpile in a state of readiness. The plants that used to assemble nuclear weapons have converted into places where weapons are disassembled, and I’ve found it interesting that the imagery associated with these has been quite different than the typical “innovation” imagery — the people shown in the pictures are “technicians” more than “scientists,” and the prevalence of women seems (in my anecdotal estimation) much higher.

The question of what to do with the remaining stockpile is the most interesting. I pose the question like this to my undergraduate engineers: imagine you were given a 1960s Volkswagen Beetle and were told that once you were pretty sure it would run, but you never ran that particular car before. Now imagine you have to keep that Beetle in a garage for, say, 20 or 30 more years. You can remove any part from the car and replace it, if you want. You can run tests of any sort on any single component, but you can’t start the engine. You can build a computer model of the car, based on past experience with similar cars, too. How much confidence would you have in your ability to guarantee, with near 100% accuracy, that the car would be able to start at any particular time?

Their usual answer: not a whole lot. And that’s without telling them that the engine in this case is radioactive, too.

Graph of Livermore nuclear weapons designers with and without nuclear testing experience. The PR spin put on this is kind of interesting in and of itself: "Livermore physicists with nuclear test experience are reaching the end of their careers, and the first generation of stockpile stewards is in its professional prime." Source: Arnie Heller, "Extending the Life of an Aging Weapon," Science & Technology Review (March 2012).

Graph of Livermore nuclear weapons designers with and without nuclear testing experience. The PR spin put on this is kind of interesting in and of itself: “Livermore physicists with nuclear test experience are reaching the end of their careers, and the first generation of stockpile stewards is in its professional prime.” Source: Arnie Heller, “Extending the Life of an Aging Weapon,” Science & Technology Review (March 2012).

Like all analogies there are inexact aspects to it, but it sums up some of the issues with these warheads. Nuclear testing by the United States ceased in 1992. It might come back today (who knows?) but the weapons scientists don’t seem to be expecting that. The warheads themselves were not built to last indefinitely — during the Cold War they would be phased out every few decades. They contain all sorts of complex materials and substances, some of which are toxic and/or radioactive, some of which are explosive, some of which are fairly “exotic” as far as materials go. Plutonium, for example, is metallurgically one of the most complex elements on the periodic table and it self-irradiates, slowly changing its own chemical structure.

Along with these perhaps inherent technical issues is the social one, the loss of knowledge. The number of scientists and engineers at the labs that have had nuclear testing experience is at this point approaching zero, if it isn’t already there. There is evidence that some of the documentary procedures were less than adequate: take the case of the mysterious FOGBANK, some kind of exotic “interstage” material that is used in some warheads, which required a multi-million dollar effort to come up with a substitute when it was discovered that the United States no longer had the capability of producing it.

So all of this seems to have a pretty straightforward message, right? That maintenance of the bomb is hard work and continues to be so. But here’s the twist: not everybody agrees that the post-Cold War work is actually “maintenance.” That is, how much of the stockpile stewardship work is really just maintaining existing capability, and how much is expanding it?

Summary of the new features of the B-61 Mod 12, via the New York Times.

Old warheads in new bottles? Summary of the new features of the B-61 Mod 12, via the New York Times.

The B-61 Mod 12 has been in the news a bit lately for this reason. The B-61 is a very flexible warhead system that allows for a wide range of yield settings for a gravity bomb. The Mod 12 has involved, among other things, an upgraded targeting and fuzing capability for this bomb. This makes the weapon very accurate and allows it to penetrate some degree into the ground before detonating. The official position is that this upgrade is necessary for the maintenance of the US deterrence position (it allows it, for example, to credibly threaten underground bunkers with low-yield weapons that would reduce collateral damage). So now we’re in a funny position: we’re upgrading (innovating?) part of a weapon in the name of maintaining a policy (deterrence) and ideally with minimal modifications to the warhead itself (because officially we are not making “new nuclear weapons”). Some estimates put the total cost of this program at a trillion dollars — which would be a considerable fraction of the total money spent on the entire Cold War nuclear weapons complex.

There are other places where this “maintenance” narrative has been challenged as well. The labs in the post-Cold War argued that they could only guarantee the stockpile’s reliability if they got some new facilities. Los Alamos got DARHT, which lets them take 3-D pictures of implosion in realtime, Livermore got NIF, which lets them play with fusion micro-implosions using a giant laser. A lot of money has been put forward for this kind of “maintenance” activity, and as you can imagine there was a lot of resistance. With all of it has come the allegations that, again, this is not really necessary for “maintenance,” that this is just innovation under the guise of maintenance. And if that’s the case, then that might be a policy problem, because we are not supposed to be “innovating” nuclear weapons anymore — that’s the sort of thing associated with arms races. For this reason, one major effort to create a warhead design that was alleged to be easier to maintain, the Reliable Replacement Warhead, was killed by the Obama administration in 2009.

"But will it work?" With enough money thrown at the problem, the answer is yes, according to Los Alamos. Source: National Security Science (April 2013).

“But will it work?” With enough money thrown at the problem, the answer is yes, according to Los Alamos. Source: National Security Science (April 2013).

So there has been a lot of money in the politics of “maintenance” here. What I find interesting about the post-Cold War moment is that “maintenance,” rather than being the shabby category that we usually ignore, has been moved to the forefront in the case of nuclear weapons. It is relatively easy to argue, “yes, we need to maintain these weapons, because if we don’t, there will be terrible consequences.” Billions of dollars are being allocated, even while other infrastructures in the United States are allowed to crumble and decline. The labs in particular have to walk a funny line here. They have an interest in emphasizing the need for further maintenance — it’s part of their reason for existence at this point. But they also need to project confidence, because the second they start saying that our nukes don’t work, they are going to run into even bigger policy problems.

And yet, it has been strongly alleged that under this cloak of maintenance, a lot of other kinds of activities might be taking place as well. So here is a perhaps an unusual politics of maintenance — one of the few places I’ve seen where there is a substantial community arguing against it, or at least against using it as an excuse to “innovate” on the sly.

Notes
  1. Andy and Lee just published a great article outlining their argument on Aeon Magazine: “Hail the maintainers.” []
  2. “In London, where Southampton Row passes Russell Square, across from the British Museum in Bloomsbury, Leo Szilard waited irritably one gray Depression morning for the stoplight to change. A trace of rain had fallen during the night; Tuesday, September 12, 1933, dawned cool, humid and dull. … The stoplight changed to green. Szilard stepped off the curb. As he crossed the street time cracked open before him and he saw a way to the future, death into the world and all our woe, the shape of things to come.” Richard Rhodes, The Making of the Atomic Bomb (New York: Simon and Schuster, 1986), 13. For a critical view of Rhodes, looking at how Rhodes’ mobilizes the trope of invention in his narrative, see esp. Hugh Gusterson, “Death of the authors of death: Prestige and creativity among nuclear weapons scientists,” in Mario Biagioli and Peter Galison, eds., Scientific authorship: Credit and intellectual property in science (New York: Routledge, 2003), 281-307. []
  3. J. Samuel Walker, The Road to Yucca Mountain: The Development of Radioactive Waste Policy in the United States (Los Angeles/Berkeley: University of California Press, 2009), 2-6. []
  4. Hence Edward Teller’s attempt to convince the scientists go to “back to the labs” to solve the H-bomb problem a few years later. []
  5. David E. Lilienthal, The Journals of David E. Lilienthal, Volume II: The Atomic Energy Years, 1945-1950 (New York: Harper and Row, 1964), p. 165. Side-note: As Lilienthal was leaving Truman’s office, Truman told him that, “You have the most important thing there is. You must making a blessing of it or,” — and then Truman pointed to a large globe in the corner of the office — “we’ll blow all that to smithereens.” []
  6. They had bomb cores, they had non-nuclear bomb assemblies, but there is little to suggest that they had anything ready to go on a short term — it would take weeks to assemble the weapons and get them into a state of readiness. The total cores on hand at Los Alamos at the end of 1945 was 2; for 1946 it was 9; for 1947 it was 13. Senator Brien McMahon later said that “when the [AEC] took over [in 1947] there were exactly two bombs in the locker,” Lilienthal himself later said that “we had one [bomb] that was probably operable when I first went off to Los Alamos [January 1947]; one that had a good chance of being operable.” Quoted in Gregg Herken, Brotherhood of the Bomb (New York: Henry Holt, 2002), 137 fn. 84. Lilienthal told Herken: “The politically significant thing is that there really were no bombs in a military sense… We were really almost without bombs, and not only that, we were without people, that was the really significant thing… You can hardly exaggerate the unreadiness of the U.S. military men at this time.” Quoted in Gregg Herken, The Winning Weapon: The Atomic Bomb in the Cold War (Princeton: Princeton University Press, 1988 [1981]), 196-197 (in the unnumbered footnote). []
Visions

Historical thoughts on Michael Frayn’s Copenhagen

Friday, February 26th, 2016

When I meet new, educated-but-not-academic people for the first time, and the subject of what I study for a living comes up, I almost invariably get two questions. The first is almost always some variant on the question of whether Hiroshima and Nagasaki were necessary. The second is almost always about Werner Heisenberg.

Werner Heisenberg (at right) with Niels Bohr (center) and Elisabeth Heisenberg (left), 1937. (Victor Weisskopf makes a cameo appearance on the left, in the back.) Source: Emilio Segrè Visual Archive, American Institute of Physics.

Werner Heisenberg (at right) with Niels Bohr (center) and Elisabeth Heisenberg (left), 1937. (Victor Weisskopf makes a cameo appearance on the left, in the back.) Source: Emilio Segrè Visual Archive, American Institute of Physics.

Did Heisenberg try to sabotage the German bomb project? Does the failure of the Germans to produce a bomb during World War II reflect on Heisenberg’s technical knowledge, his moral choices, or Allied sabotage? What do historians think, in the end, that Heisenberg was trying to do when he visited his mentor Niels Bohr in occupied Copenhagen in the fall of 1941?

These questions, often without saying so explicitly, tend to stem from one source these days: Michael Frayn’s Tony Award-winning play Copenhagen, first performed in 1998 but often re-performed, and having also been turned into a PBS film in 2002.

This pair of questions, as a pair of cities (Hiroshima and Copenhagen), is interesting to me as a historian. These appear to be the touchstone of American intellectuals’ knowledge of nuclear history, broadly speaking. One rooted in a controversial act of war, the other in a controversial piece of theatre. It is, perhaps, more of a testament to the theatre to get people (at least some people) thinking about history than one might typically suspect — that Americans think about Hiroshima is perhaps as it ought to be, that they think about Copenhagen is far more curious.

Michael Frayn's Copenhagen

When I was an undergraduate majoring in the history of science at UC Berkeley in the early 2000s, Copenhagen was very much in the air. It had just come to America (I saw the San Francisco production twice), and it resulted in the early release, in 2002, of several sealed letters in the Niels Bohr Archive relating to Niels Bohr and Werner Heisenberg’s 1941 meeting. My undergraduate advisor was a Heisenberg scholar, and I took several classes with her that touched very directly on the history of the American and German bomb projects. One of my last acts at Berkeley was to design the cover for an excellent volume of historical essays on the play. So the play has had a remarkably large role in my early interest in nuclear history.

Last fall I was asked to take part in a Q&A about the play at the Central Square Theatre in Cambridge with Alan Brody of MIT, where it was showing. Aside from giving me a chance to visit my old grad school stomping grounds (the first time, I think, since I started my current job), it also gave me a fresh excuse to revisit the play, about a decade after I last spent any real time thinking about it. What follows is based on what I said at the panel.

What did Heisenberg and Bohr talk about in 1941? I think the main response from historians that you are likely to get is: we’ll never know, and it probably isn’t that important in the scheme of things anyways. Which is to say, not much of an answer. All we have to go on regarding that conversation are a few later recollections from the only two people who were there — Bohr and Heisenberg — and all of those recollections have been fairly “tainted” by quite a lot of other events that came afterwards, and do not match up with each other. What I mean by “tainted” is that there became high stakes for both sides for remembering the events in different ways, and the effects of the successful Allied atomic bombs, coupled with the full revelation of the crimes of Nazi Germany, makes it hard for anyone to be anything like objective after the fact.

Niels and Margrethe Bohr, on the motorcycle of George Gamow, 1930. Source: Emilio Segrè Visual Archives, American Institute of Physics.

Niels and Margrethe Bohr, on the motorcycle of George Gamow, 1930. Source: Emilio Segrè Visual Archives, American Institute of Physics.

The Bohr letters released in 2002 are an example of this. Bohr’s letters to Heisenberg, which are very condemnatory, have been sometimes naively cited as “proof” of whatever took place. They are not. They were written after Bohr had read an account of the German bomb project (Robert Jungk’s Brighter than a Thousand Suns) which implied (in a footnote) that Heisenberg was claiming to have sabotaged the German project on moral grounds. Bohr, infuriated that Heisenberg might be saying such a thing, wrote a strongly-worded language arguing for the opposite. Historians now know — having looked at Jungk’s papers — that in fact Heisenberg’s letter to Jungk was mis-quoted by the latter, missing sentences where Heisenberg clearly backs away from such an implication. In any case, the point is simple enough: Bohr’s letters, written a decade later, were the angry assertions of someone who thought Heisenberg was trying to make a specific sort of claim, and Bohr was intent on disabusing him of the notion. One might also point out (as the play does) that in the end, Bohr was the one who did contribute towards making a weapon of mass destruction, not Heisenberg, and for Bohr to think that Heisenberg was attempting to claim a moral high-ground as a result would have been particularly galling.

It doesn’t mean there isn’t a grain of truth in Bohr’s letters. But decade-old memories conjured up in a moment of anger and misapprehension, at best, are the subjective memories of one individual, and at worst, may be unreliable even as those. And memories are, of course, tricky things, as any psychologist will tell you.

In any case, a historian would probably also argue that this doesn’t matter too much. One meeting is generally not the stuff that history is made of. Even if Heisenberg had said, in the strongest terms, that the Germans weren’t building a bomb, it would have not changed much of history — the momentum was far too great in the Allied project by the time Bohr got to it, and there are few who likely would have believed him without concrete proof.

Allied troops disassembling the German experimental research reactor at Haigerloch, as part of the Alsos mission. Source: Wikipedia.

Allied troops disassembling the German experimental research reactor at Haigerloch, as part of the Alsos mission. Source: Wikipedia.

But it might appear to give an one of those questions that people have been asking since 1945: why did the Germans fail to get an atomic bomb? But here also is where the historians might be annoying and pedantic. There are very few historians who believe that Heisenberg (or any of the Germans working on the project) were actively trying to avoid making an atomic bomb. Frayn’s play in many ways tries to “sit on the fence” on this issue, but in doing so the play ends up creating something of the “false balance” fallacy, giving equal time to a side that is not considered very plausible by most. It leaves up in the air whether Heisenberg was trying to sabotage (consciously or not), making it seem that this is as equally plausible an interpretation as any other.

This can be misleading. Some members of the German atomic program — Carl Friedrich von Weizsäcker was the main one — did try to claim, after the war, that the reason the Germans didn’t make an atomic bomb was because they didn’t want to make an atomic bomb. Heisenberg himself generally danced elliptically around this claim, never quite (to my knowledge) advocating it, but also describing his actions during the war with enough vagueness as to leave open the possibility that part of him, perhaps subconsciously, didn’t succeed because he didn’t want to. The “Heisenberg was a saboteur” thesis was given prominence in Thomas Power’s Heisenberg’s War (2000), but other than that, it is not present in the claims of pretty much any other recent history on the topic.1

The reason why is simple enough: there isn’t any proof of it. In fact, it seems to have been offered up, quite post-hoc, as an explanation while the German scientists were being interred at Farm Hall and trying to grapple with the meaning of Hiroshima. It also doesn’t really square with any of the actions of the Germans during the war: they were working quite hard. If one is to assume they did any “sabotage,” it must have been extremely subtle, so subtle as to be indistinguishable from them doing the opposite of sabotage.2

Instead, through many other books (which I have discussed in another post), we have a pretty good picture of the German atomic program, how it was decided that it would pursue reactors, not bombs, and how paltry it was in comparison to the Allied effort. As I have stated elsewhere, the interesting historical question for me is less why didn’t the Germans but rather why did the Americans? Because the American case is the anomaly, not the German case. To decide whether an atomic bomb could be made rapidly with the knowledge available in 1941 involved a non-trivial prediction of the future. The Americans ended up (for various reasons) thinking it could be done; the Germans thought it was not worth the risk and expense. The Americans, in any case, barely pulled it off. Had their schedule been off by a few months, there would have been no atomic bombs ready for use during World War II, and the Manhattan Project still holds the world record for fastest time between deciding to make a nuclear weapon and actually having one.

Heisenberg and Bohr in Copenhagen in the early 1930s. Source: Emilio Segrè Visual Archives, American Institute of Physics.

Heisenberg and Bohr in Copenhagen in the early 1930s. Source: Emilio Segrè Visual Archives, American Institute of Physics.

But I digress. If Copenhagen errs this is where it errs: it presents, on balance, a case that is remarkably sympathetic to the idea that Heisenberg et al. purposefully sabotaged the German bomb program. This is not what most historians see in the historical record. In its fallback position, the play presents the idea that the German bomb program was a failure on a very basic technical level — that nobody had run the critical mass equation correctly, that nobody had realized a few very basic ideas. And while it is true that there were some errors in the German calculations, they were not nearly so ignorant of these matters as the play would have you believe. They knew what plutonium was. They knew what atomic bombs could be. There were those within the German program (which was not one single program in any case, but several different groups) who knew that the critical mass of enriched uranium would be fairly low (German Army Ordnance thought in 1942 that between 10-100 kg of U-235 would give you a bomb, which is a spot-on estimate). Their problem was not one of basic technical errors. Heisenberg made some technical errors, but he was not the only one on the project.

There are many other, more interesting reasons to attribute the failure of the German bomb project. They lacked the fear of an Allied project that the Allies had of them. They feared over-promising with regards to a risky endeavor. During the later parts of the war, they suffered from supply setbacks due to their being targets of bombing and sabotage raids. They lacked anything like a Leslie Groves or Lavrenty Beria figure who could push the work through, against all odds and setbacks, in the limited amount of time that it might have been successful. But this is an area where I don’t want to overrepresent a historical consensus, though: practically every historian who writes on the topic of the German atomic bomb has a slightly different reason to argue why they didn’t make one. (If you read the volume of essays on Copenhagen I mentioned earlier, Copenhagen in Debate, the overwhelming feeling one gets is that practically every historian in there thinks Frayn is wrong, but they disagree greatly on exactly why the Germans didn’t get the bomb.)

So, does this mean that that I don’t like Frayn’s play? No! I actually like the play a lot. It just shouldn’t be anyone’s primary source for information about what happened during the German bomb project. But I don’t think it’s any worse in terms of confusing people than, say, many History Channel documentaries are. Popularizations of history often get things a bit wrong, sometimes a lot wrong — that doesn’t keep me up at night.

Same scene as above, different moment. Source: Emilio Segrè Visual Archives, American Institute of Physics.

Same scene as above, different moment. Source: Emilio Segrè Visual Archives, American Institute of Physics.

The moral questions the play raises, the way it encourages people to view historical record as something complex and evolving, and the way in which it emphasizes that changing the questions you ask of history can lead you to see different aspects of it (in a deliberate analogy to Bohr’s Complementarity), are all quite important and interesting things to think about. I think Frayn’s play manages to get a lot right about what history itself is, and how it is formed on the back of inscriptions and memories and uncertainties and understandings that shift over time. In my mind, those are the really important things to get out of a play.

And let’s be honest: how many people — even professional historians! — would care about the ins-and-outs of the history of the German atomic project if not for this play? It raised the awareness of historical scholarship on this question to new heights, even if much of that scholarship is arguing against some of the implications people take away from the play. But it made that scholarship seem relevant. It makes people ask me about Heisenberg. That’s a good thing, and a needed thing. I would much rather people take an interest in this subject, and maybe run the risk of having different views than the majority of historians, than the contrary, which is that they don’t know or care anything about it at all. Of course, there are limits to this sort of attitude.

Frayn’s errors are ones of subtle historical interpretation, and don’t seem (in Frayn’s case) to be motivated by any sort of overarching political or historical agenda. (Unlike the case of von Weizsäcker, for example.) I’m inclined to give them a “pass” for the sake of making interesting entertainment that gets people asking questions. The one error that Frayn’s play essentially avoids is the more common popular error about the German bomb project, which claims that there was a true “race for the bomb” in which the world very narrowly avoided the Nazis getting nuclear weapons before the Americans did. This is a much more insidious sort of erroneous history, in my mind, because it is used to paper over the moral questions on the American side of things, and commits a multitude of factual sins in the process. The question of whether Heisenberg was a saboteur or not is not on that level, even if I think the bulk of the historical profession would not agree with Frayn that it is as likely an explanation for the German failure as any other.

Notes
  1. Frayn has always claimed that he was not advocating this thesis explicitly, but in his interactions with historians since writing the play (and it underwent a few revisions), he drew it (and himself) closer to the “Heisenberg was a saboteur” thesis. Perhaps this was a defensive gesture, perhaps he really believes it, perhaps it appeals to him as a playwright (Heisenberg-as-tormented is a much more interesting figure, as far as characters go, than Heisenberg-as-clueless or Heisenberg-as-someone-with-different-priorities). []
  2. Heisenberg’s misquoted letter to Jungk, which set off the Bohr correspondence, was addressing this point — he was implying that under a dictatorship, trying to distinguish between a true-believer and someone who is just-playing-along is going to be almost impossible. However in the sentence Jungk omitted, he makes clear that he was not implying that he was a saboteur. In the edition of Brighter than a Thousand Suns that Bohr read, Jungk quoted Heisenberg as saying that, “In a dictatorship active resistance can only be practiced by people who seemingly take part in the system. When someone speaks openly against the system, he quite certainly deprives himself of any possibility of active resistance.” But Heisenberg then quickly backtracked: “I would not want this remark to be misunderstood as saying that I myself engaged in resistance to Hitler. On the contrary, I have always been ashamed in the face of the men of 20 July (some of whom were friends of mine), who at that time accomplished truly serious resistance at the cost of their lives.” Jungk did not quote the latter. See Cathryn Carson, Heisenberg in the Atomic Age: Science and the Public Sphere (New York: Cambridge University Press, 2014), 402-403. []
Redactions

Solzhenitsyn and the Smyth Report

Friday, February 12th, 2016

The Smyth Report is one of the more improbable things to come out of World War II. It is one thing to imagine the United States managing to take nuclear fission, a brand-new scientific discovery announced in 1939, and to have developed two fully-realized industrial-methods of enriching uranium, three industrial-sized nuclear reactors (plus several experimental ones), and three nuclear weapons by the summer of 1945. That improbable enough already, especially since their full-scale work on the project did not begin until late 1942. What really takes it into strange territory is to then imagine that, right after using said superweapon, they published a book explaining how it was made. I can think of no other parallel situation in history, before or since.

The original press release about the Smyth Report, issued only a few days after the Nagasaki bombing. Truman himself personally made the final decision over whether the report should be issued. Source: Manhattan District History Book 1, Volume 4, Chapter 8.

The original press release about the Smyth Report, issued only a few days after the Nagasaki bombing. Truman himself personally made the final decision over whether the report should be issued. Source: Manhattan District History Book 1, Volume 4, Chapter 8.

I have written on the Smyth Report before, talking about the paradoxical mix of motivations that led to its creation: the civilian scientists wanted the American people to have the facts so they could be good citizens in a democracy, while the military wanted something that set the limits of what was allowable speech. Groves and his representatives (namely Henry Smyth and Richard Tolman) devised the first declassification criteria for nuclear weapons in deciding what to allow into the report and what not to. Groves was concerned about secret details, but not the big picture (e.g., which methods of producing fissile material had worked and how they roughly worked), which he thought would be too easy to learn from newspaper accounts. There were those even at the time who criticized this approach, since it is the big picture that might provide the roadmap to a bomb, and the details would emerge to anyone who started on that journey.

The Soviets, in any case, quickly translated the Smyth Report into Russian. The Russian Smyth Report is a very faithful and careful translation. The American physicist Arnold Kramish reviewed it in 1948, and noticed that the Soviets managed to produce a document that showed they were paying very close attention to the original — specifically, that they had multiple editions of the Smyth Report, and noticed differences. The first edition of the Smyth Report was a lithoprint created by the Army, and only around 1,000 copies were printed and released a few days after the bombing of Nagasaki. A spiffed-up edition was published by Princeton University Press, under the title Atomic Energy for Military Purposes, in September 1945. Most of the differences between the two editions are cosmetic, like using full names for scientists instead of initials. In a few places, there are minor additions to the Princeton University Press edition.1

Now you see it, now you don't... comparing the sections on "pile poisoning" in the original lithograph edition of the Smyth Report (top) and the later version published by Princeton University Press (bottom) reveals the omission of a crucial sentence that indicates that this problem was not merely a theoretical one.

Now you see it, now you don’t… comparing the sections on “pile poisoning” in the original lithograph edition of the Smyth Report (top) and the later version published by Princeton University Press (bottom) reveals the omission of a crucial sentence that indicates that this problem was not merely a theoretical one. (Note: the top image is a composite of a paragraph that runs across two pages, which is why the font weight changes in a subtle way.)

But there is at least one instance of the Manhattan Project personnel deciding to remove something from the later edition. The major one noted by Kramish is what was called the “poisoning” problem. In the lithoprint version of the Smyth Report that was released in August 1945, there was a paragraph about a problem they had in the Hanford piles:

Even at the high power level used in the Hanford piles, only a few grams of U-238 and of U-235 are used up per day per million grams of uranium present. Nevertheless the effects of these changes are very important. As the U-235 is becoming depleted, the concentration of plutonium is increasing. Fortunately, plutonium itself is fissionable by thermal neutrons and so tends to counterbalance the decrease of U-235 as far as maintaining the chain reaction is concerned. However, other fission products are being produced also. These consist typically of unstable and relatively unfamiliar nuclei so that it was originally impossible to predict how great an undesirable effect they would have on the multiplication constant. Such deleterious effects are called poisoning. In spite of a great deal of preliminary study of fission products, an unforeseen poisoning effect of this kind very nearly prevents operation of the Hanford piles, as we shall see later.

Reactor “poisoning” refers to the fact that certain fission products created by the fission process can make further fissioning difficult. There are several problematic isotopes for this. There are ways to compensate for the problem (namely, run the reactor at higher power), but it caused some anxiety in the early trials of the B-Reactor. The question of whether to include a reference to this was considered a “borderline” secret by Groves when Smyth was writing the report, but it got added in. Apparently someone had second thoughts after it was released, and so the sentence I’ve put in italics in the quote above was deleted from the Princeton University Press edition. The Russian Smyth Report claimed to be — and shows evidence of — having used the Princeton University Press edition as its main reference. However, that particular sentence about poisoning shows up in the Russian edition, word-for-word.2

"Atomic Energy for Military Purposes," first edition of the Soviet Smyth Report translation made by G.M. Ivanov and published by the State Railway Transportation Publishing House, 1946. Source.

“Atomic Energy for Military Purposes,” first edition of the Soviet Smyth Report translation made by G.M. Ivanov and published by the State Railway Transportation Publishing House, 1946. Source.

Kramish concluded:

I think it is significant in that here we have evidence that at least one Soviet technical man has screened the Smyth Report in great detail and it is very unlikely that some of the references which we have hoped “maybe they won’t notice” have not been noticed. With particular regard to the statement that fission product poisoning very nearly prevents the operation of the Hanford piles, we must realize that that information most certainly has been compromised.3

This serves as a wonderful example of a very common principle in secrecy: if someone notices you trying to keep a secret, you will serve to draw more attention to what you are trying to hide.

But who read the Russian Smyth Report? I mean, other than the people actually participating in the Soviet atomic bomb project. Apparently it was published and available quite widely in the Soviet Union, which is an interesting fact in and of itself. One imagines that the American works that were chosen to be translated into Russian and mass-published must have been pretty selective during the Stalin years; a report about the United State’s atomic energy triumphs made the grade, for whatever reason.

Solzhenitsyn's Gulag mugshot from 1953. Source: Gulag Archipelago, scanned version from Wikimedia.org.

Solzhenitsyn’s Gulag mugshot from 1953. Source: Gulag Archipelago, scanned version from Wikimedia.org.

Which brings me to the event that got me thinking about the Russian Smyth Report again. For the past few years, on and off, I’ve been making my way through the unabridged edition of Aleksandr Solzhenitsyn’s Gulag Archipelago. It’s a long work, and historians take it with a grain of salt (it is not a work of academic history to say the least), but I find it fascinating, at times darkly humorous, at times shocking. Some of the chapters are skimmable (Solzhenitsyn has axes to grind that mean little to me at this point — e.g. against specific Soviet-era prosecutors). But occasionally there are just some really unexpected and surprising little anecdotes. And one of those involves the Smyth Report.

Timofeev-Ressovsky. Source.

Timofeev-Ressovsky. Source.

At one point, Solzhenitsyn talks about his time in the Butyrskaya prison, a “hub” for transferring Gulag prisoners between different camps, albeit one that it was (in Solzhenitsyn’s account) easy to get “stuck” in while they were figuring out what to do with you (and perhaps forgetting about you). Shortly after he arrived, he was approached by “a man who was middle-aged, broad-shouldered yet very skinny, with a slightly aquiline nose.” The man, another prisoner, introduced himself: “[I am] Professor Timofeyev-Ressovsky, President of the Scientific and Technical Society of Cell 75. Our society assembles every day after the morning bread ration, next to the left window. Perhaps you could deliver a scientific report to us? What precisely might it be?” He was none other than the eminent biologist and geneticist Nikolai Timofeev-Ressovsky, a victim of Lysenkoism who had taken up a post in Germany before the rise of the Nazis, been re-captured in the Soviet invasion, and thrown into prison. Timofeev-Ressovsky, though not a name that rolls of the tongue today, was one of the most famous Russian biologists of his time, and one of the world experts on the biological effects of ionizing radiation. And, true to form, he had organized a science seminar in his cell while in Butyrskaya.

Solzhenitsyn continued:

Caught unaware, I stood before him in my long bedraggled overcoat and winter cap (those arrested in winter are foredoomed to go about in winter clothing during the summer too). My fingers had not yet straightened out that morning and were all scratched. What kind of scientific report could I give? And right then I remembered that in camp I had recently held in my hands for two nights the Smyth Report, the official report of the United States Defense Department on the first atom bomb, which had been brought in from outside. The book had been published that spring. Had anyone in the cell seen it? It was a useless question. Of course no one had. And thus it was that fate played its joke, compelling me, in spite of everything, to stray into nuclear physics, the same field in which I had registered on the Gulag card.4

After the rations were issued, the Scientific and Technical Society of Cell 75, consisting of ten or so people, assembled at the left window and I made my report and was accepted into the society. I had forgotten some things, and I could not fully comprehend others, and Timofeyev-Ressovsky, even though he had been in prison for a year and knew nothing of the atom bomb, was able on occasion to fill in the missing parts of my account. An empty cigarette pack was my blackboard, and I held an illegal fragment of pencil lead. Nikolai Vladimirovich took them away from me and sketched and interrupted, commenting with as much self-assurance as if he had been a physicist from the Los Alamos group itself.5

What are the odds of all of this having happened? The Smyth Report itself was pretty improbable. The Soviets deciding to publish it themselves strikes me as unpredictable. That Solzhenitsyn would run across it in a camp seems entirely fortuitous. And finally, that Solzhenitsyn would be the one who would end up explaining it to Timofeyev-Ressovsky, an expert on the radiation effects, seems like a coincidence that a writer would abhor — it’s just too unlikely.

And yet, sometimes history lines up in peculiar ways, does it not? I am sure it never occurred to Smyth, or to Groves, that the report would end up being much-sought-after Gulag reading.

Notes
  1. On the publication history of the Smyth Report, see both H.D. Smyth, “The ‘Smyth Report’,” and Datus C. Smith, Jr., “The Publishing History of the ‘Smyth Report,'” both in Princeton University Library Chronicle 37, no. 3 (Spring 1976), 173-190, 191-203, respectively. For a copy of the lithograph version of the report, see the Manhattan District History, Book 1, Vol. 4, Chapter 8, Part 2. A scanned copy of the Princeton University Press edition is available on Archive.org. []
  2. “Несмотря на большое количество предварительных исследований продуктов деления, непредвиденный отравляющий эффект такого рода едва не заставил приостановить работы в Хэнфорде, с чем мы встретимся позднее.” A transcribed copy of the Russian Smyth Report can be found online here.) Cf. Henry D. Smyth, Atomic Energy for Military Purposes (Princeton University Press, 1945), 135, and paragraph 8.15 in the lithograph edition. []
  3. Arnold Kramish to H.A. Fidler, “Russian Smyth Report,” (18 September 1948), in Richard C. Tolman Papers, Caltech Institute Archives, Pasadena, California, Box 5, Folder 4. []
  4. Solzhenitsyn recorded his “occupation” as “nuclear physicist” on his Gulag registration card on a whim, despite knowing nothing about nuclear physics. Elsewhere in the book he refers to nuclear physics as the kind of intellectual “hobby” that one who was not engaged with the world might think about, not realizing the horrors that lurked behind the curtain of Soviet society. The presence of nuclear themes in Solzhenitsyn’s work is probably fodder for a Slavic studies article. []
  5. Aleksandr I. Solzhenitsyn, The Gulag Archipelago 1918-1956: An Experiment in Literary Investigation, I-II, Thomas P. Whitney, trans. (New York: Harper and Row, 1974), 598-599. []