Posts Tagged ‘1960s’


A brief history of the nuclear triad

Friday, July 15th, 2016

Summers for me are paradoxically the time I can get work done, and the time in which I feel I have the most work. I’m not teaching, which in theory means I have much more unstructured time. The consequence, though, is that I have about a million projects I am trying to get done in what is still a limited amount of time, and I’m also trying to see family, friends, and get a little rest. I sort of took June off from blogging (which I felt was my due after the amount of exposure I got in April and May), but I have several posts “in the hopper,” and several other things coming out soon. Yesterday I gave a talk at the US Department of State as part of their Timbie Forum (what used to be called their Generation Prague conference). I was tasked with providing the historical background on the US nuclear “triad,” as part of a panel discussion of the future of the triad. This is subject-matter I’ve taught before, so I felt pretty comfortable with it, but I thought I would return to a few of my favorite sources and refresh my understanding. This post is something of a write-up of my notes — more than I could say in a 20-minute talk.

There is a lot of buzzing about lately about the future of the United States’ “nuclear triad.” The triad is the strategic reliance on three specific delivery “platforms” for deterrence: manned-bombers (the B-2 and the B-52), long-range intercontinental ballistic missiles (ICBMs; specifically the Minuteman III), and submarine-launched ballistic missiles (SLBMs; specifically the Trident II missile carried by Ohio class submarines). Do we need all three “legs” of the triad? I don’t know — that’s a question for another day, and depends on how you balance the specific benefits and risks of each “leg” with the costs of maintaining or upgrading them. But as we think about the future of the US arsenal, looking at how the triad situation came about, and how people started talking about it as a “triad,” offers some interesting food for thought.

The modern nuclear triad. Source: Nuclear Posture Review, 2010.

The modern nuclear triad. Source: Nuclear Posture Review, 2010.

The stated logic of the triad has long as such: 1) bombers are flexible in terms of their armaments and deployments (and have non-nuclear roles); 2) ICBM forces are kept far from the enemy, are highly-accurate, and thus make a first-strike attack require a huge amount of “investment” to contemplate; 3) SLBM forces are, for the near term, capable of being kept completely hidden from attack, and thus are a guaranteed “second strike” capability. The combination of these three factors, the logic goes, keeps anyone from thinking they could get away with a nuclear attack.

That’s the rationale. It’s not the history of it, though. Like so many things, the history is rather wooly, full of stops-and-starts, and a spaghetti graph of different organizations, initiatives, committees, industrial contractors, and ideas. I have tried to summarize a lot of material below — with an idea to pointing out how each “leg” of the triad got (or did not get, depending on when) the support it needed to become a reality. I only take these histories up through about 1960, after which each of the three “legs” were deployed (and to try and go much further would result in an even-longer post).


The United States’ first approach to the “delivery” question was manned, long-range bombers. Starting with the B-29, which delivered the first atomic bombs, and some 80 million pounds of incendiaries, over Japanese cities during World War II, the US was deeply committed to the use of aircraft as the means of getting the weapons from “here” to “there.” Arguably, this commitment was a bit overextended. Bureaucratic and human factors led to what might be called a US obsession with the bomber. The officers who rose through the ranks of the US Army Air Forces, and the newly-created (in 1947) US Air Force, were primarily bomber men. They came out of a culture that saw pilots as the ultimate embodiment of military prowess. There were some exceptions, but they were rare.

The B-29's power was more than military — it became a symbol of a new form of warfare for the generals of the newly-constituted US Air Force. Source.

The B-29’s power was more than military — it became a symbol of a new form of warfare for the generals of the newly-constituted US Air Force. Source.

In their defense, the US had two major advantages over the Soviet Union with respect to bombers. The first is that the US had a lot more experience building them: the B-29 “Superfortress” was an impressive piece of machinery, capable of flying further, faster, and with a higher load of armaments than anything else in the world at the time, and it was just the beginning.

The second was geography. The B-29 had a lot of range, but it wasn’t intercontinental. With a range of some 3,250 miles, it could go pretty far: from the Marianas to anywhere in Japan and back, for example. But it couldn’t fly a bomb-load to Moscow from the United States (not even from Alaska, which was only in range of the eastern half of Russia). This might not look like an advantage, but consider that this same isolation made it very hard for the Soviet Union to use bombers to threaten the United States in the near-term, and that the US had something that the USSR did not: lots of friends near its enemy’s borders.

As early as late August 1945, the United States military planners were contemplating how they could use friendly airfields — some already under US control, some not — to put a ring around the Soviet Union, and to knock it out of commission if need be. In practice, it took several years for this to happen. Deployments of non-nuclear components of nuclear weapons abroad waited until 1948, during the Berlin Blockade, and the early stages of the Korean War.

US nuclear bomber deployments, 1945-1958. One of my favorite slides that I use when teaching — it shows what "containment" comes to mean, and amply demonstrates the geopolitics of Cold War bomber bases.

US nuclear bomber deployments, 1945-1958. One of my favorite slides that I use when teaching — it shows what “containment” comes to mean, and amply demonstrates the geopolitics of Cold War bomber bases. Shadings indicate allies/blocs circa 1958.

In 1951, President Truman authorized small numbers of nuclear weapons (with fissile cores) to be deployed to Guam. But starting in 1954, American nuclear weapons began to be dispersed all-around the Soviet perimeter: French Morocco, Okinawa, and the United Kingdom in 1954; West Germany in 1955; Iwo Jima, Italy, and the Philippines in 1957; and France, Greenland, Spain, South Korea, Taiwan, and Tunisia in 1958. This was “containment” made real, all the more so as the USSR had no similar options in the Western Hemisphere until the Cuban Revolution. (And as my students always remark, this map puts the Cuban Missile Crisis into perspective.)1

And if the B-29 had been impressive, later bombers were even more so. The B-36 held even more promise. Its development had started during World War II, and its ability to extend the United States’ nuclear reach was anticipated as early as 1945. It didn’t end up being deployed until 1948, but added over 700 miles to the range of US strategic forces, and could carry some 50,000 lbs more fuel and armament. The B-52 bomber, still in service, was ready for service by 1955, and extended the range of bombers by another several hundred miles, increased the maximum flight speed by more than 200 miles per hour.2

Plane First flight Introduced in service Combat range (mi) Maximum speed (mph) Service ceiling (ft) Bomb weight (lbs)
B-17 1935 1938 2,000 287 35,600 4,500
B-29 1942 1944  3,250 357  31,850  20,000
B-36 1946 1948  3,985 435  43,000  72,000
B-52 1952 1955  4,480 650  50,000  70,000
B-2 1989 1997  6,000 630  50,000  40,000

So you can see, in a sense, why the US Air Force was so focused on bombers. They worked, they held uniquely American advantages, and you could see how incremental improvement would make them fly faster, farther, and with more weight than before. But there were more than just technical considerations in mind: fascination with the bomber was also cultural. It was also about the implied role of skill and value of control in a human-driven weapon, and it was also about the idea of “brave men” who fly into the face of danger. The bomber pilot was still a “warrior” in the traditional sense, even if his steed was a complicated metal tube flying several miles above the Earth.


But it wasn’t just that the USAF was pro-bomber. They were distinctly anti-missile for a long time. Why? The late Thomas Hughes, in his history of Project Atlas, attributes a distinct “conservative momentum, or inertia” to the USAF’s approach to missiles. Long-range missiles would be disruptive to the hierarchy: engineers and scientists would be on top, with no role for pilots in sight. Officers would, in a sense, become de-skilled. And perhaps there was just something not very sporting about lobbing nukes at another country from the other side of the Earth.3

But, to be fair, it wasn’t just the Air Force generals. The scientists of the mid-1940s were not enthusiastic, either. Vannevar Bush told Congress in 1945 that:

There has been a great deal said about a 3,000 mile high-angle rocket. In my opinion such a thing is impossible and will be impossible for many years. The people who have been writing these things that annoy me have been talking about a 3,000 mile high-angle rocket shot from one continent to another carrying an atomic bomb, and so directed as to be a precise weapon which would land on a certain target such as this city. I say technically I don’t think anybody in the world knows how to do such a thing, and I feel confident it will not be done for a very long time to come.

Small amounts of money had been doled out to long-range rocket research as early as 1946. The Germans, of course, had done a lot of pioneering work on medium-range missiles, and their experts were duly acquired and re-purposed as part of Operation Paperclip. The Air Force had some interest in missiles, though initially the ones they were more enthusiastic about were what we would call cruise missiles today: planes without pilots. Long-range ballistic missiles were very low on the priority list. As late as 1949 the National Security Council gave ballistic missiles no research priority going forward — bombers got all of it.

Soviet testing of an R-1 (V-2 derivative) rocket at Kapustin Yar. Soviet rocket tests were detected by American radars — and spurred US interest in rockets. Source.

Soviet testing of an R-1 (V-2 derivative) rocket at Kapustin Yar. Soviet rocket tests were detected by American radars — and spurred US interest in rockets. Source.

Real interest in ballistic missiles did not begin until 1950, when intelligence reports gave indication of Soviet interest in the area. Even then, the US Air Force was slow to move — they wanted big results with small investment. And the thing is, rocket science is (still) “rocket science”: it’s very hard, all the more so when it’s never been really done before.

As for the Soviets: while the Soviet Union did not entirely forego research into bombers, the same geographic factors as before encouraged them to look into long-range rockets much earlier than the United States. For the USSR to threaten the USA with bombers would require developing very long-range bombers (because they lacked the ability to put bases on the US perimeter), and contending with the possibility of US early-warning systems and interceptor aircraft. If they could “skip” that phase of things, and jump right to ICBMs, all the better for them. Consequently, Stalin had made missile development a top priority as early as 1946.

It wasn’t until the development of the hydrogen bomb that things started to really change in the United States. With yields in the megaton range, suddenly it didn’t seem to matter as much if you couldn’t get the accuracy that high. You can miss by a lot with a megaton and still destroy a given target. Two American scientists played a big role here in shifting the Air Force’s attitude: Edward Teller and John von Neumann. Both were hawks, both were H-bomb aficionados, and both commanded immense respect from the top Air Force brass. (Unlike, say, J. Robert Oppenheimer, who was pushing instead for tactical weapons that could be wielded by the — gasp — Army.)

Ivy Mike, November 1952. Accuracy becomes less of a problem.

Ivy Mike, November 1952. Accuracy becomes less of a problem.

Teller and von Neumann told the Air Force science board that the time had come to start thinking about long-range missiles — that in the near term, you could fit a 1-2 megatons of explosive power into a 1-ton warhead. This was still pretty ambitious. The US had only just tested its first warhead prototype, Ivy Mike, which was an 80-ton experiment. They had some other designs on the books, but even the smaller weapons tested as part of Operation Castle in 1954 were multi-ton. But it was now very imaginable that further warhead progress would make up that difference. (And, indeed, by 1958 the W49 warhead managed to squeeze 1.44 Mt of blast power into under 1-ton of weight — a yield-to-weight ratio of 1.9 kt/kg.)

The USAF set up an advisory board, headed by von Neumann, with Teller, Hans Bethe, Norris Bradbury, and Herbert York on it. The von Neumann committee concluded that long-range missile development needed to be given higher priority in 1953. Finally, the Department of Defense initiated a full-scale ICBM program — Project Atlas — in 1954.

Even this apparent breakthrough of bureaucratic inertia took some time to really get under way. You can’t just call up a new weapons system from nothing by sheer will alone. As Hughes explains, there were severe doubts about how one might organize such a work. The first instinct of the military was to just order it up the way they would order up a new plane model. But the amount of revolutionary work was too great, and the scientists and advisors running the effort really feared that if you went to a big airplane company like Convair and said, “make me a rocket,” the odds that they’d actually be able to make it work were low. They also didn’t want to assign it to some new laboratory run by the government, which they felt would be unlikely to be able to handle the large-scale production issues. Instead, they sought a different approach: contract out individual “systems” of the missile (guidance, fuel, etc.), and have an overall contractor manage all of the systems. This took some serious effort to get the DOD and Air Force to accept, but in the end they went with it.

Launch sequence of an Atlas-D ICBM, 1960. Source.

Launch sequence of an Atlas-D ICBM, 1960. Source.

Even then things were pretty slow until mid-1954, when Congressional prodding (after they were told that there were serious indications the Soviets were ahead in this area) finally resulted in Atlas given total overriding defense priority. Even then the people in charge of it had to find ways to shortcut around the massive bureaucracy that had grown up around the USAF and DOD contracting policies. In Hughes’ telling of Atlas, it is kind of amazing that it gone done at rapidly as it did — it seems that there were near-endless internal obstacles to get past.  The main problem, one Air Force historian opined, was not technical: “The hurdle which had to be annihilated in correcting this misunderstanding was not a sound barrier, or a thermal barrier, but rather a mental barrier, which is really the only type that man is ever confronted with anyway.” According to one estimate, the various long-term cultural foot-dragging about ballistic missiles in the United States delayed the country from acquiring the technology for six years. Which puts Sputnik into perspective.

The US would start several different ballistic missile programs in the 1950s:

Rocket family Design started Role Military patron Prime industrial contractor Warhead yield
Redstone 1950 IRBM US Army Chrysler 0.5-3.5 Mt
Atlas 1953 ICBM USAF Convair 1.44 Mt
Thor 1954 IRBM USAF Douglas 1.4 Mt
Titan 1955 ICBM USAF Glenn Martin 3.75 Mt
Polaris 1956 SLBM USN Lockheed 0.6 Mt
Minuteman 1957 ICBM USAF Boeing 1.2 Mt

As you can see, there’s some redundancy there. It was deliberate: Titan, for example, was a backup to Atlas in case it didn’t work out. There’s also some interesting stuff going on with regards to other services (Army, Navy) not wanting to be “left out.” More on that in a moment. Minuteman, notably, was based on solid fuel, not liquid, giving it different strategic characteristics, and a late addition. The Thor and Redstone projects were for intermediate-range ballistic missiles (IRBMs), not ICBMs — they were missiles you’d have to station closer to the enemy than the continental United States (e.g., the famous Jupiter missiles kept in Turkey).

The redundancy was a hedge: the goal was to pick the top two of the programs and cancel the rest. Instead, Sputnik happened. In the resulting political environment, Eisenhower felt he had to put into production and deployment all six of them — even though some were demonstrably not as technically sound as others (Thor and Polaris, in their first incarnations, were fraught with major technical problems). This feeling that he was pushed by the times (and by Congress, and the services, and so on) towards an increasingly foolish level of weapons production is part of what is reflected in Eisenhower’s famous 1961 warning about the powerful force of the “military-industrial complex.”4


Polaris is a special and interesting case, because it’s the only one in that list that is legitimately a different form of delivery. Shooting a ballistic missile is hard enough; shooting one from a submarine platform was understandably more so. Today the rationale of the SLBM seems rather obvious: submarines have great mobility, can remain hidden underwater even at time of launch, and in principle seem practically “invulnerable” — the ultimate “second strike” guarantee. At the time they were proposed, though, they were anything but an obvious approach: the technical capabilities just weren’t there. As already discussed at length, even ICBMs were seen with a jaundiced eye by the Air Force in the 1950s. Putting what was essentially an ICBM on a boat wasn’t going to be something the Air force was going to get behind. Graham Spinardi’s From Polaris to Trident is an excellent, balanced discussion the technical and social forces that led to the SLBM becoming a key leg of the “triad.”5

The USS Tunny launches a cruise missile (Regulus) circa 1956. Source.

The USS Tunny launches a cruise missile (Regulus) circa 1956. Source.

The Navy had in fact been interested in missile technology since the end of World War II, getting involved in the exploitation of German V-2 technology by launching one from an aircraft carrier in 1947. But they were also shy of spending huge funds on untested, unproven technology. Like the Air Force, they were initially more interested in cruise than ballistic missiles. Pilotless aircraft didn’t seem too different from piloted aircraft, and the idea of carrying highly-volatile liquid fueled missiles made Navy captains squirm. The Regulus missile (research started in 1948, and fielded in 1955) was the sort of thing they were willing to look at: a nuclear-armed cruise missile that could be launched from a boat, with a range of 575 miles. They were also very interested in specifically-naval weapons, like nuclear-tipped torpedoes and depth charges.

What changed? As with the USAF, 1954 proved a pivotal year, after the development of the H-bomb, the von Neumann committee’s recommendations, and fears of Soviet work combined with a few other technical changes (e.g., improvements in solid-fueled missiles, which reduced the fear of onboard explosions and fires). The same committees that ended up accelerating American ICBM work similarly ended up promoting Naval SLBM work as well, as the few SLBM advocates in the Navy were able to use them to make a run-around of the traditional authority. At one point, a top admiral cancelled the entire program, but only after another part of the Navy had sent around solicitations to aerospace companies and laboratories for comment, and the comments proved enthusiastic-enough that they cancelled the cancellation.

As with the ICBM, there was continued opposition from top brass about developing this new weapon. The technological risks were high: it would take a lot of money and effort to see if it worked, and if it didn’t, you couldn’t get that investment back. What drove them to finally push for it was a perception of being left out. The Eisenhower administration decided in 1955 that only four major ballistic missile programs would be funded: Atlas, Titan, Thor, and Redstone. The Navy would require partnering up with either the USAF or US Army if it wanted any part of that pie. The USAF had no need of it (and rejected an idea for a ship-based Thor missile), but the Army was willing to play ball. The initial plan was to develop a ship-based Jupiter missile (part of the Redstone missile family), with the original schedule was to have one that could be fielded by 1965.

But the Navy quickly was dissatisfied with Jupiter’s adaptability to sea. It would have to be shrunk dramatically to fit onto a submarine, and the liquid-fuel raised huge safety concerns. They quickly started modifying the requirements, producing a smaller, solid-fueled intermediate-range missile. They were able to convince the Army that this was a “back-up” to the original Jupiter program, so it would technically not look like a new ballistic missile program. Even so, it was an awkward fit: even the modified Jupiter’s were too large and bulky for the Navy’s plans.

What led to an entirely new direction was a fortuitous meeting between a top naval scientist and Edward Teller (who else?), at a conference on anti-submarine warfare in the summer of 1956. At the conference, Teller suggested that trends in warhead technology meant that by the early 1960s the United States would be able to field megaton-range weapons inside a physics package that could fit into small, ship-based missiles. Other weapons scientists regarded this as possibly dangerous over-hyping and over-selling of the technology, but the Navy was convinced that they could probably get within the right neighborhood of yield-to-weight ratios. By the fall of 1956, the Navy had approved a plan to create their own ballistic missile with an entirely different envelope and guidance system than Jupiter, and so Polaris was born.

Artist's conception of a Polaris missile launch. Source.

Artist’s conception of a Polaris missile launch. Source.

The first generation of Polaris (A-1) didn’t quite meet the goals articulated in 1956, but it got close. Instead of a megaton, it was 600 kilotons. Instead of 1,500 mile range, it was 1,200. These differences matter, strategically: there was really only one place it could be (off the coast of Norway) if it wanted to hit any of the big Soviet cities. And entirely separately, the first generation of Polaris warheads were, to put it mildly, a flop. They used an awful lot of fissile material, and there were fears of criticality accidents in the event of an accidental detonation. No problem, said the weapons designers: they’d put a neutron-absorbing strip of cadmium tape in the core of the warhead, so that if the high explosives were ever to detonate, no chain reaction would be possible. Right before any intended use, a motor would withdraw the tape. Sounds good, right? Except in 1963, it was discovered that the tape corroded while inside the cores. It was estimated that 75% of the warheads would not have detonated: the mechanism would have snapped the tape, which would then have been stuck inside the warhead. There was, as Eric Schlosser, in Command and Control, quotes a Navy officer concluding that they had “almost zero confidence that the warhead would work as intended.” They all had to be replaced.6

The first generation of Polaris missiles, fielded in 1960, were inaccurate and short-ranged (separate from the fact that the warheads wouldn’t have worked). This relegated them to a funny strategic position. They could only be used as a counter-value secondary-strike: they didn’t have the accuracy necessary to destroy hardened targets, and many of those were more centrally-located in the USSR.


The “triad” was fielded starting in the 1960s. But there was little discussion of it as a “triad” per se: it was a collection of different weapon systems. Indeed, deciding that the US strategic forces were really concentrated into just three forces is a bit of an arbitrary notion, especially during the Cold War but even today. Where do foreign-based IRBMs fit into the “triad” concept? What about strategic weapons that can be carried on planes smaller than heavy bombers? What about the deterrence roles of tactical weapons, the nuclear artillery shells, torpedoes, and the itty-bitty bombs? And, importantly, what about the cruise missiles, which have developed into weapons that can be deployed from multiple platforms?

Nuclear Triad Google Ngram

Relative word frequency for “nuclear triad” as measured across the Google Books corpus. Source.


It’s become a bit cliché in history circles to pull up Google Ngrams whenever we want to talk about a concept, the professorial equivalent of the undergraduate’s introductory paragraph quoting from the dictionary. But it’s a useful tool for thinking about when various concepts “took hold” and their relative “currency” over time. What is interesting in the above graph is that the “triad” language seems to surface primarily in the 1970s, gets huge boosts in the late Cold War, and then slowly dips after the end of the Cold War, into the 21st century.

Which is to say: the language of the “triad” comes well after the various weapon systems have been deployed. It is not the “logic” of why they made the weapons systems in the first place, but a retrospective understanding of their strategic roles. Which is no scandal: it can take time to see the value of various technologies, to understand how they affect things like strategic stability.

But what’s the context of this talk about the triad? If you go into the Google Books entries that power the graph, they are language along the lines of: “we rely on the triad,” “we need the triad,” “we are kept safe by the triad,” and so on. This sort of assertive language is a defense: you don’t need to sing the praises of your weapons unless someone is doubting their utility. The invocation of the “triad” as a unitary strategic concept seems to have come about when people started to wonder whether we actually needed three major delivery systems for strategic weapons.

A strange elaboration of the triad notion from the Defense Logistics Agency, in which the "new triad" includes the "old triad" squished into one "leg," with the other "legs" being even less tangible notions joined by a web of command and control. At this point, I'd argue it might be worth ditching the triad metaphor. Source.

A strange elaboration of the triad notion from the Defense Logistics Agency, in which the “new triad” includes the “old triad” squished into one “leg,” with the other “legs” being even less tangible notions joined by a web of command and control. At this point, I’d argue it might be worth ditching the triad metaphor. Source.

When you give something abstract a name, you aid in the process of reification, making it seem tangible, real, un-abstract. The notion of the “triad” is a concept, a unifying logic of three different technologies, one that asserts quite explicitly that you need all three of them. This isn’t to say that this is done in bad faith, but it’s a rhetorical move nonetheless. What I find interesting about the “triad” concept — and what it leaves out — is that it is ostensibly focused on technologies and strategies, but it seems non-coincidentally to be primarily concerning itself with infrastructure. The triad technologies each require heavy investments in bases, in personnel, in jobs. They aren’t weapons so much as they they are organizations that maintain weapons. Which is probably why you have to defend them: they are expensive.

I don’t personally take a strong stance on whether we need to have ICBMs and bombers and SLBMs — there are very intricate arguments about how these function with regards to the strategic logic of deterrence, whether they provide the value relative to their costs and risks, and so on, that I’m not that interested in getting into the weeds over. But the history interests me for a lot of reasons: it is about how we mobilize concepts (imposing a “self-evident” rationality well after the fact), and it is also about how something that in retrospect seems so obvious to many (the development of missiles, etc.) can seem so un-obvious at the time.

  1. The list of these deployments comes from the appendices in History of the Custody and Deployment of Nuclear Weapons, July 1945 through September 1977 (8MB PDF here), prepared by the Office of the Assistant to the Secretary of Defense (Atomic Energy), in February 1978, and Robert S. Norris, William Arkin, and William Burr, “Where They Were,” Bulletin of the Atomic Scientists (November/December 1999), 27-35, with a follow-up post on the National Security Archive’s website. []
  2. All of the quantitative data on these bombers was taken from their Wikipedia pages. In places where there were ranges, I tried to pick the most representative/likely numbers. I am not an airplane buff, but I am aware this is the sort of thing that gets debated endlessly on the Internet! []
  3. Thomas Hughes, Rescuing Prometheus: Four Monumental Projects That Changed the Modern World (New York : Pantheon Books, 1998), chapter 3, “Managing a Military Industrial Complex: Atlas,” 69-139. []
  4. Eric Schlosser’s Command and Control has an excellent discussion of the politics of developing the early missile forces. []
  5. Graham Spinardi, From Polaris to Trident: The Development of US Fleet Ballistic Missile Technology (Cambridge University Press, 1994). []
  6. Spinardi, as an aside, gives a nice account of how they eventually achieved the desired yield-to-weight ratio in the W-47: the big “innovation” was to just use high-enriched uranium as the casing of the secondary, instead of unenriched uranium. As he notes, this was the kind of thing that was obvious in retrospect, but wasn’t obvious at the time — it required a different mindset (one much more willing to “expend” fissile material!) than the weapons designers of the early 1950s were used to. []

Dogs in space

Friday, June 26th, 2015

Confession: I once told my students something I knew wasn’t true. It was during a lecture on the Space Race, on Sputnik 2, which carried the dog Laika into space in November 1957. I told them about how the Soviets initially said she had lived a week before expiring (it was always intended to be a one-way trip), but that after the USSR had collapsed the Russians admitted that she had died almost immediately because their cooling systems had failed. All true so far.

But then one bright, sensitive sophomore, with a sheen on her eyes and a tremble in her voice, asked, “But did they at least learn something from her death?” And I said, “oh, um, well, uh… yes, yes — they learned a lot.”

Which I knew was false — they learned almost nothing. But what can you do, confronted with someone who is taking in the full reality of the fact that the Soviets sent a dog in space with the full knowledge it would die? It’s a heavy thing to admit that Laika gave her life in vain. (In subsequent classes, whenever I bring up Sputnik, I always preempt this situation by telling the above story, which relieves a little of the pressure.)

A Soviet matchbox with a heroic Laika, the first dog in space. Caption: "First satellite passenger — the dog, Laika." Want it on a shirt, or a really wonderful mug?

A Soviet matchbox with a heroic Laika, the first dog in space. Caption: “First satellite passenger — the dog, Laika.” Want it on a shirt, or a really wonderful mug?

I’m a dog person. I’ve had cats, but really, it’s dogs for me. I just believe that they connect with people on a deeper level than really any other animal. They’ve been bred to do just that, of course, and for a long time. There is evidence of human-dog cohabitation going back tens of thousands of years. (Cats are a lot more recently domesticated… and it shows.) There are many theories about the co-evolution of humans and dogs, and it has been said (in a generalization whose broadness I wince at, but whose message I endorse) that there have been many great civilizations without the wheel, but no great civilizations without the dog.

So I’ve always been kind of attracted to the idea of dogs in space. The “Mutniks,” as they were dubbed by punny American wags, were a key, distinguishing factor about the Soviet space program. And, Laika aside, a lot of them went up and came back down again, providing actually useful information about how organisms make do while in space, and allowing us to have more than just relentlessly sad stories about them. The kitsch factor is high, of course.

A friend of mine gave me a wonderfully quirky and beautiful little book last holiday season, Soviet Space Dogs, written by Olesya Turkina, published by FUEL Design and Publishing. According to its page, the idea for the book was hatched up by a co-founder of the press, who was apparently an aficionado of Mutnikiana (yes, I just invented that word). He collected a huge mass of odd Soviet (and some non-Soviet) pop culture references to the Soviet space dogs, and they commissioned Turkina, a Senior Research Fellow at the State Russian Museum, to write the text to accompany it. We had this book on our coffee table for several months before I decided to give it a spin, and I really enjoyed it — it’s much more than a lot of pretty pictures, though it is that, in spades, too. The narrative doesn’t completely cohere towards the end, and there are aspects of it that have a “translated from Russian” feel (and it was translated), but if you overlook those, it is both a beautiful and insightful book.

Soviet Space Dogs cover

First off, let’s start with the easy question: Why dogs? The American program primarily used apes and monkeys, as they were far better proxies for human physiology than even other mammals. Why didn’t the Soviets? According to one participant in the program, one of the leading scientists had looked into using monkeys, talking with a circus trainer, and found out that monkeys were terribly finicky: the training regimes were harder, they were prone to diseases, they were just harder in general to care for than dogs. “The Americans are welcome to their flying monkeys,” he supposedly said, “we’re more partial to dogs.” And, indeed, when they did use some monkeys later, they found that they were tough — one of them managed to worm his way out of his restraints and disable his telemetric equipment while in flight.

The Soviet dogs were all Moscow strays, picked for their size and their hardiness. The Soviet scientists reasoned that a dog that could survive on the streets was probably inherently tougher than purebred dogs that had only lived a domesticated life. (As the owner of a mutty little rescue dog, I of course am prone to see this as a logical conclusion.)

The Soviet dog program was more extensive than I had realized. Laika was the first in orbit, but she was not the first Soviet dog to be put onto a rocket. Turkina counts at least 29 dogs prior to Laika who were attached to R-1 and R-2 rockets (both direct descendants of the German V-2 rockets), sent up on flights hundreds of miles above the surface of the Earth starting in 1951. An appendix at the back of the book lists some of these dogs and their flights.

Oleg Gazenko, chief of the dog medical program, with Belka (right) and Strelka (left) at a press conference in 1960. Gazenko called this "the proudest moment of his life."

Oleg Gazenko, chief of the dog medical program, with Belka (right) and Strelka (left) at a TASS press conference in 1960. Gazenko called this “the proudest moment of his life.”

Many of them died. Turkina talks of the sorrow and guilt of their handlers, who (naturally) developed close bonds with the animals, and felt personally responsible when something went wrong. Some of the surviving dogs got to live with these handlers when they retired from space service. But when the surviving dogs eventually expired, they would sometimes end up stuffed and in a museum.

I had thought I had heard everything there was to hear about Laika, but I was surprised by how much I learned. Laika wasn’t really meant to be the first dog in space — she was the understudy of another dog who had gotten pregnant just before. Laika’s death was a direct result of political pressures to accelerate the launch before they were ready, in an effort to “Sputnik” the United States once again. The head of the dog medical program, when revealing Laika’s true fate in 2002, remarked that, “Working with animals is a source of suffering to all of us. We treat them like babies who cannot speak. The more time passes, the more I’m sorry about it. We shouldn’t have done it. We did not learn enough from the mission to justify the death of the dog.”

The Soviets did not initially focus on the identity of Laika. Laika was just listed as an experimental animal in the Sputnik 2 satellite. Rather, it was the Western press, specifically American and British journalists, that got interested in the identity, and fate, of the dog. The Soviet officials appear to have been caught by surprise; I can’t help but wonder if they’d had a little less secrecy, and maybe ran this by a few Americans, they’d have realized that of course the American public and press would end up focusing on the dog. It was only after discussion began in the West that Soviet press releases about Laika came out, giving her a name, a story, a narrative. And a fate: they talked about her as a martyr to science, who would be kept alive for a week before being painlessly euthanized.

Staged photo of Belka in a space suit.

Staged photo of Belka in a space suit.

In reality, Laika was already dead. They had, too late, realized that their cooling mechanisms were inadequate and she quickly, painfully expired. The fact that Laika was never meant to come back, Turkina argues, shaped the narrative: Laika had to be turned into a saintly hero, a noble and necessary sacrifice. One sees this very clearly in most of the Soviet depictions of Laika — proud, facing the stars, serious.

The next dogs, Belka and Strelka, came back down again. Belka was in fact an experienced veteran of other rocket flights. But it was Strelka’s first mission. Once again, Belka and Strelka were not meant to be the dogs for that mission: an earlier version of the rocket, kept secret at the time, exploded during launch a few weeks earlier, killing the dogs Lisichka and Chaika. These two dogs were apparently beloved by their handlers, and this was a tough blow. The secrecy of the program, of course, pervades the entire story of the Soviet side of the Space Race, and serves as a marked contrast with the much more public-facing US program (the consequences of which are explored in The Right Stuff, among other places).

When Belka and Strelka came back safely, Turkina argues, they became the first real Soviet “pop stars.” Soviet socialism didn’t really allow valorization of individual people other than Stakhanovite-style exhortations. The achievements of one were the achievements of all, which doesn’t really lend itself to pop culture. But dogs were fair game, which is one reason there is so much Soviet-era Mutnikiana to begin with: you could put Laika, Belka, and Strelka on cigarettes, matches, tea pots, commemorative plates, and so on, and nobody would complain. Plus, Belka and Strelka were cute. They could be trotted out at press conferences, on talk shows, and were the subjects of a million adorable pictures and drawings. When Strelka had puppies, they were cheered as evidence that biological reproduction could survive the rigors of space, and were both shown off and given as prized gifts to Soviet officials. So it’s not just that the Soviet space dogs are cool or cute — they’re also responsible for the development of a “safe” popular culture in a repressive society that didn’t really allow for accessible human heroes. Turkina also argues that Belka and Strelka in particular were seen as paradoxically “humanizing” space. By coming back alive, they fed dreams of an interstellar existence for mankind that were particularly powerful in the Soviet context.

Yuri Gagarin reported to have joked: “Am I the first human in space, or the last dog?” It wasn’t such a stretch — the same satellite that Belka and Strelka rode in could be used for human beings, and gave them no more space. A friend of mine, Slava Gerovitch, has written a lot about the Soviet philosophy of space rocket design, and on the low regard the engineers who ran the program had for human passengers and their propensity for messing things up. Gagarin had about as much control over his satellite as Belka and Strelka did over theirs, because neither were trusted to actually fly a satellite. The contrast between the engineering attitudes of the Soviet Vostok and the American Mercury program is evident when you compare their instrument panels. The Mercury pilots were expected to be able to fly, while poor Gagarin was expected to be flown. 

Soviet Space Dogs is a pretty interesting read. It’s a hard read for a dog lover. But seeing the Soviet space dogs in the context of the broader Soviet Space Race, and seeing them as more than just “biological cargo,” raises them from kitsch and trivia. There is also just something so emblematic of the space age about the idea of putting dogs into satellites — taking a literally pre-historic human technology, one of the earliest and most successful results of millennia of artificial breeding, and putting it atop a space-faring rocket, the most futuristic technology we had at the time.


The lost IAEA logo

Friday, September 26th, 2014

Last year I wrote a post on here about the story behind the emblem of the International Atomic Energy Agency (IAEA). To quote from it:

The International Atomic Energy Agency (IAEA) has, without much competition, the coolest logo of any part of the UN. Heck, I’ll go so far as to say that they have the coolest logo of any atomic-energy organization in history. I mean, check this thing out:

IAEA flag

It’s not only an atom, it’s an atom with style. It’s got a classic late-1950s/early-1960s asymmetrical, jaunty swagger. Those electrons are swinging, baby! This is an atom for love, not war, if you dig what I’m saying. An atom that knows how to have fun, even when it’s doing serious business, like investigating your nuclear program. The James Bond of atoms.

The summary version of the post is that the IAEA started informally using the atom with jaunty electron orbits as its emblem in 1957, realized that it was using a symbol for lithium, realized that lithium was fuel for H-bombs, and decided to add an electron to make it beryllium (which is still an important component of nuclear weapons but whatever). While they were sprucing it up a bit, they decided it might be fun to add on a bunch of other things as well:

Once the process of altering the emblem had started, further suggestions were made and soon a design evolved in which the central circle had been expanded into a global map of the world and five of the eight loops formed by the ellipses contained respectively: a dove of peace with an olive branch; a factory with smoking chimneys and surcharged with a train of three gear wheels; a microscope; two spears of grain; and finally a caduceus, to symbolise respectively the peaceful, industrial, research, agricultural and medicinal uses of atomic energy.

This monstrosity got made into a crazy gold-on-blue flag and hoisted up above the United Nations flag at the Third General Conference of the IAEA in 1958. As I wrote then,

Apparently in UN-world, this was seen as a major scandal. A representative of the UN Secretary General, Dag Hammarskjöld, saw it, flipped out, and had it immediately removed. And it was never seen again. 

After that they formalized the procedure for approving the emblem of the IAEA and we got the relatively conservative emblem seen above on the current IAEA flag.

My only regret about that post is that I couldn’t find a picture of the monstrous flag. I even contacted the IAEA and everything. No luck. The best I could do was an artist’s interpretation:

IAEA 1958 logo (artist's interpretation)

Which seemed a bit ridiculous but I thought it matched the description pretty well.

Well, guess what: the monstrous emblem has been found. Eric Reber, a radiation safety specialist at the IAEA,had read my previous blog post on this topic and then noticed framed documents on the walls at IAEA Headquarters regarding the evolution of the IAEA emblem. Among them were two different versions of the monstrous emblem, along with text noting that they had apparently been missing from the IAEA Archives until fairly recently, when copies were given as donations. Eric very helpfully took some photos of them and sent them to me in an e-mail.

They were designed by one Manfred Sollinger, about whom I know very little. Anyway, here they are. First, the one described in the passage above:

Sollinger's IAEA emblem

Which is not too far off from what I had guessed it to look like — the most striking difference between the size of the earth at the center. The other one had just a dove, but added another Earth:

Sollinger IAEA emblem 2

Both of which are impressively ugly compared to the actual emblem the IAEA adopted. The first one has a cluttered, cheesy quality that would not have reproduced well at small sizes at all; the second one has unfortunately testicular overtones.

Anyway, it’s great that they were actually found. As someone who dabbles in graphic design, I am impressed with how something beautiful and brilliant almost turned out to be something terrible and tacky. The Sollinger designs overlaid so much symbolism onto the IAEA’s emblem that the whole thing almost tipped over. For once, sending the thing to committee seems to have improved the outcome, and we got a sleek, stylish atom for the ages instead.


Would nukes have helped in Vietnam?

Friday, July 25th, 2014

That night I listened while a colonel explained the war in terms of protein. We were a nation of high-protein, meat-eating hunters, while the other guy just ate rice and a few grungy fish heads. We were going to club him to death with our meat; what could you say except, “Colonel, you’re insane”? … Doomsday celebs, technomaniac projectionists; chemicals, gases, lasers, sonic-electric ballbreakers that were still on the boards; and for back-up, deep in all their hearts, there were always the Nukes, they loved to remind you that we had some, “right here in-country.” Once I met a colonel who had a plan to shorten the war by dropping piranha into the paddies of the North. He was talking fish but his dreamy eyes were full of mega-death.1

So wrote Michael Herr in his masterful and classic book of Vietnam War journalism, Dispatches. I recently re-read Herr’s book, and this passage stuck out to me today more than it did when I first read the book a decade ago. “There were always the Nukes…” is an attitude that one sometimes sees expressed in other contexts as well, the idea that if it came to it, the USA could, of course, “glassify” any enemy it so chose to. The bomb in this view is the ultimate guarantor of security and strength. But of course Vietnam, among other conflicts, showed very clearly that being a nuclear state didn’t guarantee victory.2

A napalm attack in the Vietnam War. Source.</a

Napalm in Vietnam. Source.

Would nukes have helped with the Vietnam War? It is a somewhat ghastly idea, to add more slaughter to an already terrible, bloody war, but worth contemplating if only to consider in very tangible terms what nuclear weapons can and can’t do, could and couldn’t do. It was a question that was studied seriously at the time, too. In early 1967, a JASON committee consisting of Freeman Dyson, Robert Gomer, Steven Weinberg, and S. Courtney Wright wrote a 60 page report on “Tactical Nuclear Weapons in Southeast Asia,” considering what could and couldn’t be done with the bomb. The whole thing has been obtained (with redactions) under the Freedom of Information Act by the Nautilus Institute, who have put together a very nice website on the subject under the title “Essentially Annihilated.”3

The motivation for the report, according to Ann Finkbeiner, came from a few of the JASON consultants hearing off-hand comments from military men about the appeal of using a nuke or two:

“We were scared about the possible use in Vietnam,” said Robert Gomer, a chemist from the University of Chicago who was probably Jason’s first nonphysicist. During the 1966 spring meeting Freeman Dyson was “at some Jason party,” he said, and a former chairman of the Joint Chiefs of Staff who was also close to President Johnson “just remarked in an offhand way, ‘Well, it might be a good idea to throw in a nuke once in a while just to keep the other side guessing.'”4

Gomer took initiative on the report, but it is Dyson’s name that is most closely associated it, in part because he (alphabetically) is listed as the first author, in part because Dyson is much more famous. Finkbeiner, who interviewed the authors of the report, says that it was not a report that was specifically requested by the military or government, and that it hewed closely to analytical/tactical questions as opposed to ethical ones.

Which is to say, as you probably have figured out, they set out to show from the start that tactical nuclear weapons would not be a good thing to introduce into the Vietnam War. So they weren’t exactly neutral on the question, but neutrality and objectivity are not the same thing.

1967 - Tactical Nuclear Weapons in Southeast Asia

The report is a fascinating read. It serves as a wonderful lens into how strategic thinking about tactical weapons worked at the time, because the authors, perhaps in an attempt to make sure it was taken seriously, couch all of their reasoning in the language of other, official studies on the issue. So it offers insights into the kinds of issues that were popping up in war-gaming scenarios, and assumptions that were apparently taken as valid about what a tactical nuclear weapon could and couldn’t do. And by deliberately avoiding any discussions of politics and morality (and with that, strategic nuclear weapons use), it does allow them to get into the nitty gritty of the tactical questions without getting overwhelmed by larger and often more nebulous debates about the propriety of nuclear arms.

The basic conclusions are pretty simple. The main one is that even if the US did use tactical nuclear weapons, and such use was entirely unilateral, it wouldn’t get very useful results. Tactical nuclear weapons were thought to be most useful against large massed troops or columns of armor, such as an invading Red Army moving into Western Europe. The problem is, that didn’t describe the situation in Vietnam very well at all, where the Viet Cong and North Vietnamese Army typically operated in smaller groups under forest cover. You could use nukes to destroy their bases, but you’d have to locate their bases first — and by the time you’ve done that, you could have just bombed them conventionally. In general, in a war like Vietnam, tactical nuclear weapons appeared to offer little advantage over conventional arms in most situations. The one special addition of the nukes — the fallout — was too difficult to predict and control, and fallout that would be a useful barrier to troops would necessarily become a problem for civilians as well.

There are some interesting numbers in the report. One is a citation of a conclusion from a RAND study that in a complex war environment, a tactical nuclear weapon is “on the average, equivalent to about 12 nonnuclear attack sorties.” The JASON authors conclude that if you wanted to do something like the Rolling Thunder campaign using nuclear weapons, under this rubric it would require 3,000 tactical nuclear weapons per year. They also note another war-gaming conclusion, that even in the presumedly “Soviet” tactical nuclear weapons environment — large, massed troop and armor concentrations —  “the average number of enemy casualties per strike was about 100.” This probably assumes that some strikes are outright misses while others are very effective, but that’s an impressively low number. The JASON authors note that this would be considerably less in a Vietnam-style environment, because the ability to locate targets of interest would probably be much lower.

There are, they acknowledge, a few cases where specific uses of tactical nuclear weapons might be advantageous. Bridges, headquarters, and underground tunnel complexes could be more easily taken out with tactical nukes than conventional weapons. Such conclusions are somewhat underwhelming, and maybe that is the point: when you do figure out what good the weapons might do, it seems much less impressive than the fantasies.

Map of the Tet Offensive, 1968; the JASON authors would perhaps have us consider what this would have looked like if the North Vietnamese had been supplied tactical weapons from the Soviets or Chinese. Source.

Map of the Tet Offensive, 1968; the JASON authors would perhaps have us consider what this would have looked like if the North Vietnamese had been supplied tactical weapons from the Soviets or Chinese. Source.

The strongest argument they make against using the weapons, though, is not so much that they would be ineffective against the Vietnamese. Rather, it is that the weapons would be really effective against American troops in Vietnam:

If about 100 weapons of 10-KT yield each could be delivered from the base perimeters onto all 70 target areas in a coordinate strike, the U.S. fighting capability in Vietnam would be essentially annihilated. In the more likely contingency that only a few weapons could be delivered intermittently, U.S. casualties would still be extremely high and the degradation of U.S. capabilities would be considerable.

This is often the argument made today whenever the idea of using nuclear weapons — tactical or otherwise — re-raises its head. Since World War II, the US has the strongest interest in not breaking the “nuclear taboo” because once nukes start becoming normalized, the US usually stands to lose the most, or at least a lot. Massed troops, heavy armor, and fixed bases? That’s how we prefer to fight wars. Massive urban cities conveniently located on coasts? Check. Economy highly reliant on communications, transportation, and other infrastructure? Yeah. Which is probably one of the deep reasons that the US, for all of its lack of willingness to commit to a no-first use policy, has always managed to find a way so far to avoid using the tens of thousands of nuclear weapons it produced in the years since Hiroshima and Nagasaki.

The report convincingly concludes:

The use of TNW [tactical nuclear weapons] in Southeast Asia would be highly damaging to the U.S. whether or not the use remains unilateral. The overall result of our study is to confirm the generally held opinion that the use of TNW in Southeast Asia would offer the U.S. no decisive military advantage if the use remained unilateral, and it would have strongly adverse military effects if the enemy were able to use TNW in reply. The military advantages of unilateral use are not overwhelming enough to ensure termination of the war, and they are therefore heavily outweighed by the disadvantages of eventual bilateral use.

When I teach to students, I try to emphasize that there are some deep paradoxes at the core of nuclear weapons policies. Deterrence is a tricky-enough strategic issue, a mixture of  military logic and raw fear. Tactical nuclear weapons add complicated wrinkles. Were they merely a means of making deterrence more credible, by showing the Soviets (and whomever else) that we were not willing to let the threat of nuclear annihilation become paralyzing? Or were they really intended to be military weapons that could be usefully employed, regarded as a sort of scaling up of conventional capabilities? In terms of their doctrine and literature, it isn’t clear: they are spoken of as both, in part because a stated willingness to use them is core to their deterrent value. (That is, if you are going to be convincing in your statements that you are willing to use them, you have to look like you are willing to use them, even if you don’t want to use them.)

How much of tactical nuclear weapons was just swagger? Above, the Davy Crockett weapons system, in full-swagger mode.

How much of tactical nuclear weapons was just swagger? Above, the Davy Crockett weapons system, in full-swagger mode.

Thinking through, in a concrete way, what would happen if nuclear weapons are used, and what the long-term consequences would be (politically, tactically, environmentally, economically, etc.) is an important exercise, even if it is sometimes labeled as morbid. Too often, I think, we close our minds to the very possibility. But “thinking the unthinkable” is valuable — not because it will make us more willing to use them, but because it highlights the limitations of their use, and helps us come to grips with what the actual consequences would be.

So would nuke have been useful in the Vietnam War? I think the JASON authors do a good job of showing that the answer is, “almost certainly not very useful, and possibly completely disastrous.” And knowing, as we do now and they did not in 1967, how much of a long-term blot Vietnam would be to US domestic and foreign policy in the years that followed, consider how much of a danger it would have posed if we had started letting little nukes fly on top of everything else.

  1. Michael Herr, Dispatches (Vintage, 1991 [1977]), 60-61. []
  2. Were they actually “right here in-country”? Apparently not, except on aircraft carriers nearby. Of course moving them into the war theatre would not have likely been very difficult. Still, it is an interesting wrinkle to Herr’s account — the colonels bragging to the journalists, assuming it occurred, was in part just bravado. []
  3. F. Dyson, R. Gomer, S. Weinberg, S.C. Wright, “Tactical Nuclear Weapons in Southeast Asia,” JASON Study S-266 (March 1967), originally posted online at []
  4. Ann Finkbeiner, The Jasons: The Secret History of Science’s Postwar Elite (New York: Viking, 2006), 93. []

Oppenheimer and the Gita

Friday, May 23rd, 2014

What was going through J. Robert Oppenheimer’s head when he saw the great fireball of the Trinity test looming above him? According to his brother, Frank, he only said, “it worked.” But most people know a more poetic account, one in which Oppenheimer says (or at least thinks) the following famous lines:

I remembered the line from the Hindu scripture, the Bhagavad-Gita; Vishnu is trying to persuade the Prince that he should do his duty and, to impress him, takes on his multi-armed form and says, “Now I am become Death, the destroyer of worlds.” I suppose we all thought that, one way or another.

This particular version, with a haggard Oppenheimer, was originally filmed for NBC’s 1965 The Decision to Drop the Bomb. I first saw it in Jon Else’s The Day After Trinity (1980), and thanks to YouTube it is now available pretty much anywhere at any time. There are other versions of the quote around — “shatter of worlds” is a common variant — though it did not begin to circulate as part of Los Alamos lore until the late 1940s and especially the 1950s.

It’s a chilling delivery and an evocative quote. The problem is that most of the time when it is invoked, it is done purely for its evocativeness and without any understanding as to what it actually supposed to mean. That’s what I want to talk about: what was Oppenheimer trying to say, presuming he was not just trying to be gnomic? What was he actually alluding to in the Gita?

An Indian greeting card for Diwali from 1998, celebrating India's nuclear tests. Source.

An Indian greeting card for Diwali from 1998, celebrating India’s nuclear tests. Source.

I should say first that I’m no scholar of Hindu theology. Fortunately, many years back, James A. Hijiya of the University of Massachusetts Dartmouth wrote a wonderful article on “The Gita of J. Robert Oppenheimer” that covers all of this topic as well as one might ever want it to be covered.1 Everything I know about the Gita comes from Hijiya’s article — so read it if you want much more discussion of this than I have here. I am particularly fond of Hijiya’s opening line, that Oppenheimer’s paraphrase of the Gita is “one of the most-cited and least-interpreted quotations” of the atomic age.

Oppenheimer was not a Hindu. He was not much of anything, religiously — he was born into a fairly secular Jewish family, embraced the Ethical Culture of Felix Adler, and saw philosophy as more of a boon to his soul than any particular creed. He enjoyed the ideas of the Gita, but he was not religious about it. Hijiya thinks, however, that much can be understood about Oppenheimer’s life through the lens of the Gita as a philosophical and moral code, something necessary in part because Oppenheimer rarely discussed his own internal motivations and feelings about making the bomb. It helps explain, Hijiya argues, that a man who could utter so many public statements about the “sin” and “terror” and “inhumanity” of Hiroshima and Nagasaki could also have been the one who pushed for their use against Japan and who never, ever said that he actually regretted having built the bomb or recommending its use. It helps resolve one of the crucial contradictions, in other words, at the heart of the story of J. Robert Oppenheimer.

J. Robert Oppenheimer, from the Emilio Segrè Visual Archives.

J. Robert Oppenheimer, from the Emilio Segrè Visual Archives.

It’s not clear when Oppenheimer was first exposed to the Gita. I have seen accounts, in oral histories, that suggested that he was spouting Gita lines even while he was a young graduate student studying in Europe. What is definitely known is that he didn’t start studying Sanskrit seriously until 1933, when he started studying with the renown Sanskrit scholar Arthur W. Ryder while he was a professor at Berkeley. In letters, he wrote gushingly about the book to his brother, and much later he quoted from it at the service held at Los Alamos in April 1945 upon the death of President Roosevelt.

The story of the Gita is that of Arjuna, a human prince who has been summoned to a war between princely cousins. Arjuna doesn’t want to fight — not because he lacks courage, or skill, but because it is a war of succession, so his enemies are his own cousins, his friends, his teachers. Arjuna does not want to kill them. He confides in his charioteer, who turns out to be the god Krishna2 in a human form. The text of the Gita is mostly Krishna telling Arjuna why Arjuna must go to war, even if Arjuna does not want to do it.

Krishna’s argument hinges on three points: 1. Arjuna is a soldier, and so it is his job — his duty — to wage war; 2. It is Krishna’s job, not Arjuna’s, to determine Arjuna’s fate; 3. Arjuna must ultimately have faith in Krishna if he is going to preserve his soul.

Arjuna eventually starts to become convinced. He asks Krishna if he will show him his godlike, multi-armed form. Krishna obliges, showing Arjuna an incredible sight:

Krishna revealing himself to Arjuna. Source.

Krishna revealing himself to Arjuna. Source.

A thousand simultaneous suns
     Arising in the sky
Might equal that great radiance,
     With that great glory vie.

Arjuna is awestruck and spellbound:

Amazement entered him; his hair
     Rose up; he bowed his head;
He humbly lifted folded hands,
     And worshipped God. . . .

And then, in his most amazing and terrible form, Krishna tells Arjuna what he, Krishna, is there to do:

Death am I, and my present task

Arjuna, suitably impressed and humbled, then agrees to join in the battle.

The above quotes are from Ryder’s translation of the Gita. You can see that Oppenheimer’s is not especially different from that, even if it is somewhat changed. Personally I find Ryder’s version of the last part more impressive — it is more poetic, more stark. Ryder’s translation, Hijiya explains, is a somewhat idiosyncratic but defensible one. What Ryder (and Oppenheimer) translate as “Death,” others have translated as “Time,” but Hijiya says that Ryder is not alone for calling attention to the fact that in this context the expanse of time was meant to be a deadly one.

If you would like to see the famous “death” verse in the original, it is chapter 11, verse 32 of the Gita, and looks like this:

Gita verse 11:32

This website (from which I got the above) translates it as:

Lord Krsna said: I am terrible time the destroyer of all beings in all worlds, engaged to destroy all beings in this world; of those heroic soldiers presently situated in the opposing army, even without you none will be spared.

While I find Ryder’s more poignant, the longer translation makes it extremely clear what Krishna has in mind. All will perish, eventually. In war, many will perish whether you participate or not. For Oppenheimer and the bomb, this may have seemed especially true. The cities of Hiroshima and Nagasaki (and others on the target list) were on it not because they were necessarily the most important, but because they had so far been spared from firebombing. They were being actively preserved as atomic bomb targets. Had the bomb not been used or made, they probably would have been firebombed anyway. Even if the physicists had refused to make nuclear weapons, the death toll of World War II would hardly have been altered.

Trinity long exposure

“A thousand simultaneous suns”: a long-exposure shot of the Trinity test.

So let’s step back and ask who Oppenheimer is meant to be in this situation. Oppenheimer is not Krishna/Vishnu, not the terrible god, not the “destroyer of worlds” — he is Arjuna, the human prince! He is the one who didn’t really want to kill his brothers, his fellow people. But he has been enjoined to battle by something bigger than himself — physics, fission, the atomic bomb, World War II, what have you — and only at the moment when it truly reveals its nature, the Trinity test, does he fully see why he, a man who hates war, is compelled to battle. It is the bomb that is here for destruction. Oppenheimer is merely the man who is witnessing it. 

Hijiya argues that Oppenheimer’s sense of Gita-inspired “duty” pervades his life and his government service. I’m not sure I am 100% convinced of that. It seems like a heavyweight philosophical solution to the relatively lightweight problem of a life of inconsistency. But it’s an interesting idea. It is perhaps a useful way to think about why Oppenheimer got involved with so many projects that he, at times, seemed ambivalent about. Though ambivalence seemed readily available in those days — nobody seems to be searching for deep scriptural/philosophical justifications for Kenneth Bainbridge’s less eloquent, but equally ambivalent post-Trinity quote: “Now we’re all sons-of-bitches.”

A rare color photograph of Oppenheimer from October 1945, with General Groves and University of California President Robert Sproul, at the Army-Navy "E" Award ceremony. Source.

A rare color photograph of Oppenheimer from October 1945, with General Groves and University of California President Robert Sproul, at the Army-Navy “E” Award ceremony. Source.

One last issue that I find nagging me. We have no recording of Oppenheimer saying this except the 1965 one above. By this time, Oppenheimer is old, stripped of his security clearance, and dying of throat cancer. It is easy to see the clip as especially chilling in this light, given that is being spoken by a fading man. How would it sound, though, if it was coming from a younger, more chipper Oppenheimer, the one we see in photographs from the immediate postwar period? Would it be able to preserve its gravity?

Either way, I think the actual context of the quote within the Gita is far deeper, far more interesting, than the popular understanding of it. It isn’t a case of the “father” of the bomb declaring himself “death, the destroyer of worlds” in a fit of grandiosity or hubris. Rather, it is him being awed by what is being displayed in front of him, confronted with the spectacle of death itself unveiled in front of him, in the world’s most impressive memento mori, and realizing how little and inconsequential he is as a result. Compelled by something cosmic and terrifying, Oppenheimer then reconciles himself to his duty as a prince of physics, and that duty is war.

  1. James A. Hijiya, “The Gita of J. Robert Oppenheimer,” Proceedings of the American Philosophical Society 144, no. 2 (June 2000), 123-167. []
  2. Oppenheimer, in his 1965 interview, identifies the god as Vishnu, perhaps in error. Krishna is an avatar of Vishnu, however, so maybe it is technically correct along some line of thinking. []