Posts Tagged ‘Bad ideas’

Meditations

When bad history meets bad journalism

Wednesday, January 7th, 2015

A lot of people have been passing around the latest news story about the supposed “Nazi nuclear bunker” that was supposedly discovered in Austria. Normally I would not comment at length about such a thing, originating from tabloids and so obviously (to my eye) devoid of serious merit. But since the passing around has even made it to more austere publications (like the Washington Post) and because a number of people have asked me informally what I thought about it, I thought I could take it as an opportunity to talk about what bad history of the bomb looks like.

The Sunday Times (UK) version of the "bunker" story.

The Sunday Times (UK) version of the “bunker” story.

Cheryl Rofer has compiled some of the basics of the story on Nuclear Diner. The basics are this: an Austrian filmmaker named Andreas Sulzer has been trying to make a film about an Austrian bunker that dates from World War II. He has been claiming there was a nuclear connection to this bunker, and gotten some headline-grabbing tabloid stories about it, since 2013. What’s the evidence for it being a nuclear site? He claims that he has an American intelligence document from 1944 that lists it as a site of possible interest. He has made vague claims about radioactivity. It is part of an existing weapons production plant (a factory that produced rocket engines). Some physicists might have been sent there. Did we mention there was a bunker?

Yeah. That’s it. This stuff is pretty obviously thin, but let’s just say: Allied intelligence about German nuclear sites in 1944 was poor and scattered and means nothing. Radiation is everywhere and can fluctuate from a variety of natural and artificial sources — only by talking about levels of radiation do we start to wonder if something unusual is occurring, and only by talking about specific radioactive isotopes can we start to really wonder if any given radiation is of interest to us or not. (This is not hard to do — there are hand-held devices that can both measure radiation intensity and determine the isotopes in about 30 seconds, these days.1) The fact that it is part of an existing plant is probably evidence against it being a super-secret nuclear installation (compartmentalization). And physicists were involved in practically every technical program during World War II, so their presence tells us nothing one way or the other.

Forbes' version of the same story from February 2014.

Forbes’ version of the same story from February 2014.

The obvious thinness of this evidence, and the obvious motivation of the filmmaker — who has been denied a permit to dig around the site — should already be a sign to any self-respecting journalist that this is not worth touching. Certainly not without talking to some other experts about it. The only person anyone seems to have called up is Rainer Karlsch, whose own work on the German nuclear program is extremely controversial (Karlsch claims the Germans detonated some kind of dirty bomb or pure-fusion bomb — also on very thin evidence). For all of his outsized claims, at least Karlsch did his homework and tries to marshall evidence for his work. I don’t think Karlsch’s evidence fits the strength of his claims, and there are real technical problems with Karlsch’s reasoning, but there is at least a serious scholarly discussion to be had there. There is not one to be had (at least, not yet) about the Sulzer claims, because there is no there there. Karlsch’s only quoted comment is that he thinks the Germans got further along with their nuclear program than most people think (to be addressed below), and doesn’t comment on the Sulzer claims at all — which makes it not really a supporting comment for Sulzer at all.2

But if you slap “Nazi” and “nuclear” onto something, it gets a lot of hits, and that’s what appears to be the motivation here both for the Sunday Times and the many other sources that have picked up the same story and run it without checking in with anybody else to see whether it is even plausible. Which is a sad state of things.

December 2013 version of the story, from the Daily Mail (UK).

December 2013 version of the story, from the Daily Mail (UK).

There is a bunker. No credible evidence has actually been offered to make one think it has a nuclear connection. That the Germans had large underground bunkers for technical projects is well-known — that they had them for their nuclear program is not, because there is no evidence of this. (They did do some reactor work in some caves towards the end of the war, but it was small scale.) Newspapers should stop passing this kind of nonsense around… especially since it is not even “news” at this point — the bunker story has been circulating for over 2 years, without any additional increase in credibility!

About two or three times a year I get contacted by people who are working on things relating to the German or Japanese wartime nuclear programs. The appeal is obvious: there is a built-in audience for this kind of thing, and there are still areas of uncertainty with regards to these programs. I have written on here in the past on a few of the questions I’ve stumbled into with regards to the German program, for example. We don’t know everything about these programs, and there are reasons to think that there is still more to learn. So I’m always willing to engage with people on these questions.

At least the Washington Post hedged the headline a bit, "says he uncovered." Still misleading, but makes the factual basis a little more clear.

At least the Washington Post hedged the headline a bit, “says he uncovered.” Still misleading, but makes the factual basis a little more clear.

Some of the stuff strikes me as improbable or a little crack-pot-ish; some of it seems plausible and interesting. I’m a firm believer in the idea that sometimes non-academic historians stumble onto interesting things and interesting questions, and I don’t discriminate unless people show themselves to be going down truly untenable paths (like that small segment of the Internet who believes that all nuclear weapons are a hoax, which is just a truly silly “theory”).3 I will hear just about anyone out, and tell them what I find plausible or implausible about their ideas. I am a skeptical person — big claims need big evidence. But I do believe there is still a lot “out there” to be found on these topics, and maybe more than a few surprises yet.

The German nuclear program seems to attract a lot of “theorizing” in particular, ranging from the “they got further in it than most people think” (which is an easy argument to make since most people don’t know much about the German program at all) to the absurd extremes of “they made an atomic bomb and the only way the Americans got one themselves was by stealing it” (conspiracy country).

The 1945 version of the same headline — New York Herald Tribune, August 8, 1945, story about the Norsk Hydro plant, which also over-emphasized the closeness of Germany's getting the bomb for dramatic effect.

The 1945 version of the same headline — New York Herald Tribune, August 8, 1945, story about the Norsk Hydro plant, which also over-emphasized the closeness of Germany’s getting the bomb for dramatic effect. Click the image to read the article.

Public understanding of the German nuclear program is indeed a confused and often incorrect thing, owing to a history of the politicization of the topic. In the very early days after the dropping of the atomic bomb on Hiroshima, the “race with the Germans” narrative was played up very heavily by the Manhattan Project public relations people, both because it made for good drama and because it seemed to justify the US interest in the topic. And, indeed, the scientists who lobbied for the atomic bomb program between 1939 and 1944 or so did believe that the Germans might be ahead of them and that they were “racing” them to make the atomic bomb. It was not until late 1944 that the Alsos program reported back that the Germans had never gotten very far with their work, and that the US had never really been “racing” with them at all. Even today, though, we still see the legacy of this, with television programs and movies over-dramatizing the closeness of the “race,” and the importance of things like the sabotage of the Norsk Hydro facility, all of which makes it look like the Germans were very close indeed.

On the other side of the coin, we also have things like the Copenhagen play, which is an excellent piece of drama (and I am indeed a fan) but has infected a new generation with the idea that the Germans made no progress at all with regards to nuclear weapons — and indeed, had never even seriously considered the matter — because Heisenberg had consciously sabotaged the whole project. Never mind that Heisenberg’s own claims were far more nuanced on this point (he was always vague on this, only implying in a round-about way that they might not have made a bomb because they didn’t really want one). The play and the press around it has led a lot of people to think that the Germans knew really nothing about nuclear weapons development, and that they had intentionally avoided making them.4

Allied troops disassembling the German experimental research reactor at Haigerloch, as part of the Alsos mission.

Allied troops disassembling the German experimental research reactor at Haigerloch, as part of the Alsos mission.

The truth, so far as we know it now, is somewhere other than these two extremes. Mark Walker’s two books (German National Socialism and the Quest for Nuclear Power, 1939-1949 and Nazi Science: Myth, Truth, And The German Atomic Bomb) are still excellent, though a bit more has come out since then. The basic gist of Walker’s work is that the German program knew a lot on paper, but never quite crystallized everything organizationally or technically to keep their program from being anything more than a side-project, focused primarily on reactor development. They never developed large-scale isotopic enrichment facilities, and they never got a reactor that went critical. Their reactor work was sophisticated given the conditions under which it was being done, but it never achieved criticality. Some members of the various teams that worked on the project had some fairly accurate understandings of how a nuclear weapon might be made, but there was also a lot of confusion circulating around (some members of the team understood it would be a fast-neutron fission reaction in enriched material, some were confused and focused on it being basically an out-of-control pile). Some were considering rather advanced designs (Karlsch has convinced me that they thought a bit about implosion, for example), but the whole thing was mostly a exploratory program.

The plausibility of any new arguments about German successes with their nuclear programs is always limited in part by what we know about the technical requirements of such an endeavor. The Manhattan Project need not be the only model of a successful nuclear program (it was in many ways unusual), but it does provide some baseline metrics for talking about nuclear programs of the 1940s. Any successful plutonium-breeding program is going to require fairly large reactors, because plutonium reprocessing extracts only grams of “product” from each ton of uranium fuel that goes into it. (Each of the three early Hanford reactors extracted only 225 grams of plutonium from every ton of uranium processed.) Any successful isotopic-enrichment program is going to require huge feed supplies of uranium (the Manhattan Project approaches consumed thousands of tons of uranium), pretty large facilities, and a lot of electricity.

When Alsos leader Sam Goudsmit was investigating the Germany nuclear work, he was struck by how little of it was kept very secret — evidence, in his mind, that they had not gotten very far with it. (S.A. Goudsmit and F.A.C. Wardenburg, "TA-Straussburg Mission," (8 December 1944), copy in the Bush-Conant file, Roll 1, Target 6, Folder 5.)

When Alsos leader Sam Goudsmit was investigating the Germany nuclear work, he was struck by how little of it was kept very secret — evidence, in his mind, that they had not gotten very far with it. (S.A. Goudsmit and F.A.C. Wardenburg, “TA-Straussburg Mission,” (8 December 1944), copy in the Bush-Conant file, Roll 1, Target 6, Folder 5.)

Separate from the technical argument is a bureaucratic one — if the Germans supposedly made such progress, why is was there no organizational evidence of it in the copious reports, papers, formal and informal statements, and so on that were discovered by the Alsos project, later researchers, and at Farm Hall? Big programs leave big traces. If one wants to claim that the German program was big, one has to show where those traces are, or come up for a plausible argument for why there are no traces.

This does not mean that one might not find more evidence in the future. It just means that any claims and evidence need to fit within the existing technical and bureaucratic narratives. For example, one could argue, “oh, but they did have a massive isotopic enrichment plant, and it was here, and here is evidence of — if one had the evidence. On the bureaucratic side, one could argue that people who we previously thought were important in the program (e.g. Gerlach) were actually out of the loop entirely. Or something along those lines.

Weekly World News, 2002: "Confederacy was Building an Atomic bomb."

Weekly World News, 2002: “Confederacy was Building an Atomic bomb.” No comment!

But you can’t just find a hole in the ground and say, “ah, here is where Hitler was making a bomb.” Aside from the implausibility of a nuclear program existing in a single underground bunker, by itself this kind of claim hasn’t done the work to be plausible. At best, if done in good faith, it is a claim along the lines of “oh, maybe this is worth looking into more.” That is fine — hey, I’d even nominally support that — but one shouldn’t be going to the newspapers about it at that stage, and the newspapers shouldn’t be passing off your claim as having more validity than half of the other implausible claims that circulate around these topics. This is premature, and the net effect is going to be misleading for the readership.

As historians, we need to be open to the idea that there are still mysteries to be solved, secrets to be unearthed, even about ground that superficially looks well-trodden. But I wish journalists would do a little better than just re-printing the overblown claims of unreliable sources, without checking with experts on their plausibility. Couching it as, “this guy made a claim” doesn’t get you off the hook, because we all know that only the initial, big-claim story is the one that will be passed around, and that almost nobody will notice when no follow-ups occur, or the mild “so no evidence turned up for this guy’s big claim” story comes out.

Journalists — You can do better!

Notes
  1. I got to see a demonstration of the lanthanum bromide detectors that U.S. Customs and Border Protection uses at Port Newark a few weeks back — they were pretty neat. Totally hand-held, hold it up to something interesting and click a button and 30 seconds later it tells you what isotope it is, color-coded by whether it is natural in origin, a medical isotope, or something with nuclear weapons relevance. []
  2. Karlsch’s work deserves to be gone over more carefully. Its lack of translation into English has probably inhibited this to some degree. Karlsch has found some interesting documents, but I am not sure they add up to what he claims they do. For example, Karlsch and and Mark Walker published an article in 2005 where they claimed they had a diagram of a Nazi atomic bomb — it is clearly not one. For one thing, it has “plutonium” (the American term for Element 94) labeled on it, which clearly dates it as a postwar creation. And for another thing, it is probably a crib from Hans Thirring’s 1946 Die Geschichte der Atombombe, which itself is explicitly based on the Smyth Report. Karlsch’s work is filled with a muddled discussion of pure-fusion concepts (which wouldn’t work), dirty bombs, atomic bombs of various sorts, “mini-nukes,” and all sorts of other indications of a less-than-complete understanding. []
  3. For those who are curious: The “all nukes are a hoax” theory seems to stem from a couple different sources. The technical argument is that fast neutron chain reactions are impossible, because the fission cross-section of U-235 is small for fast neutrons. The cross-section is indeed small for high energy neutrons, which is why reactors use a moderator to slow the neutrons down and increase the likelihood of their capture by the small amounts of U-235 in the nuclear fuel. What is weird is that the people making this argument don’t seem to realize that this is exactly why you use 80-90% enriched material in a bomb — it is to overcome this low probability of fissioning by just putting a ridiculous number of targets in the area. It is also why there are tampers, neutron reflectors, and the like, and also why even a relatively sophisticated weapon like the Fat Man only fissioned something like 13-18% of its fissile material, and the Little Boy bomb only fissioned around 1% of its fissile material. They also have weirdly interpreted the “Hiroshima and Nagasaki are not that different from the firebombing of Tokyo” argument (to a rather absurd conclusion, that it was just a firebombing, despite the fact that firebombing and atomic bombing have really different outcomes), believe that the photographs of the mushroom clouds are all faked (despite the fact that such a level of fakery was really quite beyond the technology of the 1940s — similar to the “Apollo moon hoax,” it would have been easier to make an atomic bomb in the 1940s than to fake an atomic bomb convincingly on film), and believe that every scientist in the entire world (except for the random engineer who came up with this dumb theory) is in on the secret and has reasons to propagate it indefinitely (and I am apparently in on the hoax as well, to my surprise). The one person I e-mailed with about this, just trying to see what the limits of their rationality were and what it spawned from, eventually let on that to him, one of the most convincing pieces of evidence for this theory is the number of Jews who were involved in the creation of the bomb, wink wink, nudge nudge. This probably hits at the real origin of this bad idea — just another form of mis-matched anti-Semitism grafting itself onto another source. That my last name is a Jewish-sounding one did not apparently resonate with the person e-mailing me. []
  4. On the backs-and-forths of the Heisenberg story, see esp. Mark Walker, German National Socialism and the Quest for Nuclear Power, 1939-1949 (Cambridge: Cambridge University Press, 1989), 204-221, and the essays in Matthias Dörries, Michael Frayn’s “Copenhagen” in Debate: Historical Essays and Documents on the 1941 Meeting Between Niels Bohr and Werner Heisenberg (Berkeley, CA: Office for History of Science and Technology, UC Berkeley, 2005). []
Visions

The button that isn’t

Monday, December 15th, 2014

One of my favorite articles from The Onion concerns the imagined allure of “the button”:

"Obama Makes It Through Another Day Of Resisting Urge To Launch All U.S. Nuclear Weapons At Once" - The Onion

Despite being constantly tempted by the seductive power of having an apocalyptic arsenal at his fingertips, President Barack Obama somehow made it through another day Tuesday without unlocking the box on his desk that houses “the button” and launching all 5,113 U.S. nuclear warheads. …

Though the president confirmed his schedule was packed with security briefings, public appearances, and cabinet meetings, he said he couldn’t help but steal a few glances at the bright red button, which is “right there, staring at [him], all the time.”

The article manages to wring a lot of humor out of the idea that on the President’s desk is a big red button that starts World War III.

Like much of The Onion’s satire, it is exceedingly clever in taking a common trope and pushing it into absurd territory. Even the physicality of the idea of a “button” is toyed with:

“Did you know that if you sort of put enough weight on the button with your fingertip, you can feel a little slack there before it actually clicks?” Obama added. “Thank you, and God bless America.”

I was thinking about this article a few months ago because I was asked by my friend from grad school, Latif Nasser, if I would be interested in talking to him and NPR’s Robert Krulwich about “the button” for a Radiolab episode they were working on. The Radiolab show was initially meant to be about buttons — in all senses of the term — but they kept finding that things that they thought were buttons were in fact either non-buttons or non-functional buttons. You can listen to the full episode here: “Buttons Not Buttons.”

You should listen to the whole episode, but — spoiler alert — the interesting thing about the nuclear “button” is that there isn’t a nuclear button. That is, nuclear war can’t be started by just pounding a big red button. Sorry. Waging a nuclear war requires a lot more activity, spread out across a vast geographical area, and is a complex interaction of technical, organizational, and political issues. In the Radiolab interview, I attempted to paint in broad strokes the kind of vast technical and organizational networks that are needed to maintain the United States’ command and control systems — the systems that let you use nukes when you want to, and make sure that nukes don’t get used when they are not supposed to be used.

The problem with a big red button is that someone might actually press it. Like a cat. Source: Ren and Stimpy, Space Madness.

The problem with a big red button is that someone might actually press it. Like a cat. Source: Ren and Stimpy, Space Madness.

The Onion article indicates, in its wry way, one of the key reasons there isn’t a single “button” — it would be way, way too dangerous. Nobody wants nuclear war to be that easy to start. Or, as I like to put it, you don’t want a nuclear weapon that can be set off by a cat. Because you know that, sooner or later, a cat would set it off. Such is the way of cats. There are places in the world where big red buttons exist. But they are usually used to stop activity, not start it. They are emergency shutoff switches, things that you need to push in a big hurry, without too much hassle. And even they might require you to break some glass first.

On the other hand, if you’re a believer in deterrence and all that, you don’t want it to be too hard to start nuclear war. So this is just another variation of the “always/never” problem: you want to be able to start nuclear war if you need to, and start it quickly and effectively, but on the other hand, you want to never start nuclear war accidentally.

"Nuclear C3 [Command, Control, Communication] Transport Systems" — an attempt to characterize the technical, organizational, and political systems needed to actually start nuclear war in the United States today. Source: The Nuclear Matters Handbook, by the Office of the Assistant  Secretary of Defense for Nuclear, Chemical, and Biological Defense Programs.

“Nuclear C3 [Command, Control, Communication] Transport Systems” — an attempt to characterize the technical, organizational, and political systems needed to actually start nuclear war in the United States today. Source: The Nuclear Matters Handbook, by the Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense Programs.

From a technical standpoint, this means that you have to engineer a pretty complex system. In principle, the United States President has complete control over whether nuclear war starts. But the President doesn’t work in a missile silo. So somewhere between the President and the silo has to be a delegation of authority, and a subsequent potential loss of control. One could, in theory, completely automate that control — you could install a single “button” — but aside from the technical difficulty of that, there are a lot of new potential errors that get introduced.

Eric Schlosser’s Command and Control is a great read if you are interested in how this problem gets addressed over the course of the Cold War. Michael Gordin’s Five Days in August is, in part, a great description of how these issues were wrangled with even in the earliest days of nuclear weapons as political control transferred from Potsdam to Washington and Tinian. If I could add footnotes to radio interviews, I would prominently name-check both of these books — they greatly improved my own understanding of this. As did the work of my friend Dan Volmar, who is writing a dissertation on US command and control systems. And I need to give a massive hat-tip to Stephen Schwartz, who clued me into the Roger Fisher “cut the heart out” that I wrote about a few years back.

A submarine-launched ballistic missile trigger. Courtesy of Stephen Schwartz.

A submarine-launched ballistic missile trigger. Photo by the always amazing Paul Shambroom; courtesy of Stephen Schwartz.

Of course, there sometimes are switches, keys, and — yes — buttons, as part of the overall launching systems. But they aren’t centralized, and they are always more complicated than a simple big, red button. US ICBM launches require two simultaneous keys to be turned by two different people, on different sides of the room, the idea being that the odds of two people deciding to collude on an illegal launch are lower than one. SLBM launches, Stephen Schwartz reports, require the use of a pistol-grip “trigger” that is kept in a safe— a button, of sorts, though one that is hard to accidentally set off.

OK, so there isn’t a single nuclear button. Why do we talk about a button? This is a great history of technology question — “the button” is a metaphor, and not a new one. Starting in the 19th century, “the button” (or the “push button” or other variations on the same thing) started becoming a standard English idiom for “quick and easy and automatic.” The idea that you “push a button” and something happens — as easy as that! — shows up in the late Machine Age and continues onward.

So “the button” is just a metaphor for how technology makes things easy. That’s why everything in The Jetsons is button-based — the future was meant to take this to the extreme, where George Jetson would just spend all day at work pressing a single button. (Of course, many of us do press buttons all day — I am pressing quite a few as I type this — but generally not just one button.) If you combine the button imagery with the atomic bomb, it becomes a comment on the way technology has made mass destruction easy.

"Now I am become Edison, Wrecker of Worlds": fictional account of Edison destroying England using "button no. 4," 1896. Source: The Electrical Trade, August 1, 1896.

“Now I am become Edison, Wrecker of Worlds”: fictional account of Edison destroying Great Britain using “button no. 4,” 1896. Source: The Electrical Trade, August 1, 1896, page 9.

In fact, the idea that technology had made it so easy to destroy the world that a single button could set it all off predates nuclear fission. In the 1890s, a Parisian newspaper published a skit about Thomas Edison destroying all of England by joining some wires and pushing “button No. 4.” For this anecdote, and several others relating to “pushbutton” world destruction prior to fission, I am grateful to Spencer Weart’s Nuclear Fear: A History of Images.1

There are other “button” stories I found while searching from newspaper and journal databases. In 1929, the famous American physicist Robert Millikan was quoted as saying that “no ‘scientific bad boy’ ever would be able to blow up the world by releasing atomic energy,” (!), and he later “scoffed at the idea that in the future by pressing a button a man might have an army of atomic servants wash his face, mend his clothing or make his bed.” In a 1932 review of the 1928 proto-atomic-bomb drama “Wings Over Europe,” it is noted that “All the scenes are set in Downing-street and the chief character is a young scientist who has presented to the cabinet a secret that could destroy the world by pressing a button.” In article from the Weekly Irish Times in 1932, it is feared that atomic energy will enable “a time when, by the pressing of a button or turning of a switch, it will be possible for somebody to explode the whole world like a penny balloon. It will be a tremendously lethal opportunity.” On these proto-atomic bomb fantasies, especially in the U.K. context, I found Graham Farmelo’s Churchill’s Bomb very useful. Churchill himself was an atomic-bomb speculator in the H.G. Wells vein, writing about atomic energy as early as 1931.

August 20, 1945: a LIFE magazine correspondent reports on "push-button" battles of the future.

August 20, 1945: a LIFE magazine correspondent reports on “push-button” battles of the future.

So when the actual atomic bomb came along, there was already a ready-made imagery to be applied to it. (And Weart’s book is excellent at demonstrating this well beyond the realm of buttons, too.) So when did people first start applying the button metaphor to the bomb? As early as late August 1945, there are discussions of “push-button” battles. By November 1945, when the physicist Edward Condon argued during Congressional testimony that “The next war should be described as the War of the Pushbuttons,” it was already something of a cliché. The idea of World War III being a “pushbutton war” started pretty early.

I have to admit, I was a little uncertain how the “button” line of discussion was going to come together when I was first contacted by Latif, but the more I thought about it, the more I thought it was a nice way to get into a lot of different, interesting issues both about the history of the bomb (and what “the button” means, metaphorically), but also in explaining why there isn’t a button, it allows for a nice, tangible, interesting way to bring up the questions involved in command and control systems — moving the discussion of the bomb out of the realm of pure imagery and into the tangible and real.

Notes
  1. The specific Edison piece, with “button No. 4,” comes from a source Weart cites: Wyn Wachhorst, Thomas Alva Edison: An American Myth (MIT Press, 1981), 103. A copy of the actual story is reproduced above, via Google Books (and thanks to Latif for finding that copy of it). []
Redactions

Would nukes have helped in Vietnam?

Friday, July 25th, 2014

That night I listened while a colonel explained the war in terms of protein. We were a nation of high-protein, meat-eating hunters, while the other guy just ate rice and a few grungy fish heads. We were going to club him to death with our meat; what could you say except, “Colonel, you’re insane”? … Doomsday celebs, technomaniac projectionists; chemicals, gases, lasers, sonic-electric ballbreakers that were still on the boards; and for back-up, deep in all their hearts, there were always the Nukes, they loved to remind you that we had some, “right here in-country.” Once I met a colonel who had a plan to shorten the war by dropping piranha into the paddies of the North. He was talking fish but his dreamy eyes were full of mega-death.1

So wrote Michael Herr in his masterful and classic book of Vietnam War journalism, Dispatches. I recently re-read Herr’s book, and this passage stuck out to me today more than it did when I first read the book a decade ago. “There were always the Nukes…” is an attitude that one sometimes sees expressed in other contexts as well, the idea that if it came to it, the USA could, of course, “glassify” any enemy it so chose to. The bomb in this view is the ultimate guarantor of security and strength. But of course Vietnam, among other conflicts, showed very clearly that being a nuclear state didn’t guarantee victory.2

A napalm attack in the Vietnam War. Source.</a

Napalm in Vietnam. Source.

Would nukes have helped with the Vietnam War? It is a somewhat ghastly idea, to add more slaughter to an already terrible, bloody war, but worth contemplating if only to consider in very tangible terms what nuclear weapons can and can’t do, could and couldn’t do. It was a question that was studied seriously at the time, too. In early 1967, a JASON committee consisting of Freeman Dyson, Robert Gomer, Steven Weinberg, and S. Courtney Wright wrote a 60 page report on “Tactical Nuclear Weapons in Southeast Asia,” considering what could and couldn’t be done with the bomb. The whole thing has been obtained (with redactions) under the Freedom of Information Act by the Nautilus Institute, who have put together a very nice website on the subject under the title “Essentially Annihilated.”3

The motivation for the report, according to Ann Finkbeiner, came from a few of the JASON consultants hearing off-hand comments from military men about the appeal of using a nuke or two:

“We were scared about the possible use in Vietnam,” said Robert Gomer, a chemist from the University of Chicago who was probably Jason’s first nonphysicist. During the 1966 spring meeting Freeman Dyson was “at some Jason party,” he said, and a former chairman of the Joint Chiefs of Staff who was also close to President Johnson “just remarked in an offhand way, ‘Well, it might be a good idea to throw in a nuke once in a while just to keep the other side guessing.'”4

Gomer took initiative on the report, but it is Dyson’s name that is most closely associated it, in part because he (alphabetically) is listed as the first author, in part because Dyson is much more famous. Finkbeiner, who interviewed the authors of the report, says that it was not a report that was specifically requested by the military or government, and that it hewed closely to analytical/tactical questions as opposed to ethical ones.

Which is to say, as you probably have figured out, they set out to show from the start that tactical nuclear weapons would not be a good thing to introduce into the Vietnam War. So they weren’t exactly neutral on the question, but neutrality and objectivity are not the same thing.

1967 - Tactical Nuclear Weapons in Southeast Asia

The report is a fascinating read. It serves as a wonderful lens into how strategic thinking about tactical weapons worked at the time, because the authors, perhaps in an attempt to make sure it was taken seriously, couch all of their reasoning in the language of other, official studies on the issue. So it offers insights into the kinds of issues that were popping up in war-gaming scenarios, and assumptions that were apparently taken as valid about what a tactical nuclear weapon could and couldn’t do. And by deliberately avoiding any discussions of politics and morality (and with that, strategic nuclear weapons use), it does allow them to get into the nitty gritty of the tactical questions without getting overwhelmed by larger and often more nebulous debates about the propriety of nuclear arms.

The basic conclusions are pretty simple. The main one is that even if the US did use tactical nuclear weapons, and such use was entirely unilateral, it wouldn’t get very useful results. Tactical nuclear weapons were thought to be most useful against large massed troops or columns of armor, such as an invading Red Army moving into Western Europe. The problem is, that didn’t describe the situation in Vietnam very well at all, where the Viet Cong and North Vietnamese Army typically operated in smaller groups under forest cover. You could use nukes to destroy their bases, but you’d have to locate their bases first — and by the time you’ve done that, you could have just bombed them conventionally. In general, in a war like Vietnam, tactical nuclear weapons appeared to offer little advantage over conventional arms in most situations. The one special addition of the nukes — the fallout — was too difficult to predict and control, and fallout that would be a useful barrier to troops would necessarily become a problem for civilians as well.

There are some interesting numbers in the report. One is a citation of a conclusion from a RAND study that in a complex war environment, a tactical nuclear weapon is “on the average, equivalent to about 12 nonnuclear attack sorties.” The JASON authors conclude that if you wanted to do something like the Rolling Thunder campaign using nuclear weapons, under this rubric it would require 3,000 tactical nuclear weapons per year. They also note another war-gaming conclusion, that even in the presumedly “Soviet” tactical nuclear weapons environment — large, massed troop and armor concentrations —  “the average number of enemy casualties per strike was about 100.” This probably assumes that some strikes are outright misses while others are very effective, but that’s an impressively low number. The JASON authors note that this would be considerably less in a Vietnam-style environment, because the ability to locate targets of interest would probably be much lower.

There are, they acknowledge, a few cases where specific uses of tactical nuclear weapons might be advantageous. Bridges, headquarters, and underground tunnel complexes could be more easily taken out with tactical nukes than conventional weapons. Such conclusions are somewhat underwhelming, and maybe that is the point: when you do figure out what good the weapons might do, it seems much less impressive than the fantasies.

Map of the Tet Offensive, 1968; the JASON authors would perhaps have us consider what this would have looked like if the North Vietnamese had been supplied tactical weapons from the Soviets or Chinese. Source.

Map of the Tet Offensive, 1968; the JASON authors would perhaps have us consider what this would have looked like if the North Vietnamese had been supplied tactical weapons from the Soviets or Chinese. Source.

The strongest argument they make against using the weapons, though, is not so much that they would be ineffective against the Vietnamese. Rather, it is that the weapons would be really effective against American troops in Vietnam:

If about 100 weapons of 10-KT yield each could be delivered from the base perimeters onto all 70 target areas in a coordinate strike, the U.S. fighting capability in Vietnam would be essentially annihilated. In the more likely contingency that only a few weapons could be delivered intermittently, U.S. casualties would still be extremely high and the degradation of U.S. capabilities would be considerable.

This is often the argument made today whenever the idea of using nuclear weapons — tactical or otherwise — re-raises its head. Since World War II, the US has the strongest interest in not breaking the “nuclear taboo” because once nukes start becoming normalized, the US usually stands to lose the most, or at least a lot. Massed troops, heavy armor, and fixed bases? That’s how we prefer to fight wars. Massive urban cities conveniently located on coasts? Check. Economy highly reliant on communications, transportation, and other infrastructure? Yeah. Which is probably one of the deep reasons that the US, for all of its lack of willingness to commit to a no-first use policy, has always managed to find a way so far to avoid using the tens of thousands of nuclear weapons it produced in the years since Hiroshima and Nagasaki.

The report convincingly concludes:

The use of TNW [tactical nuclear weapons] in Southeast Asia would be highly damaging to the U.S. whether or not the use remains unilateral. The overall result of our study is to confirm the generally held opinion that the use of TNW in Southeast Asia would offer the U.S. no decisive military advantage if the use remained unilateral, and it would have strongly adverse military effects if the enemy were able to use TNW in reply. The military advantages of unilateral use are not overwhelming enough to ensure termination of the war, and they are therefore heavily outweighed by the disadvantages of eventual bilateral use.

When I teach to students, I try to emphasize that there are some deep paradoxes at the core of nuclear weapons policies. Deterrence is a tricky-enough strategic issue, a mixture of  military logic and raw fear. Tactical nuclear weapons add complicated wrinkles. Were they merely a means of making deterrence more credible, by showing the Soviets (and whomever else) that we were not willing to let the threat of nuclear annihilation become paralyzing? Or were they really intended to be military weapons that could be usefully employed, regarded as a sort of scaling up of conventional capabilities? In terms of their doctrine and literature, it isn’t clear: they are spoken of as both, in part because a stated willingness to use them is core to their deterrent value. (That is, if you are going to be convincing in your statements that you are willing to use them, you have to look like you are willing to use them, even if you don’t want to use them.)

How much of tactical nuclear weapons was just swagger? Above, the Davy Crockett weapons system, in full-swagger mode.

How much of tactical nuclear weapons was just swagger? Above, the Davy Crockett weapons system, in full-swagger mode.

Thinking through, in a concrete way, what would happen if nuclear weapons are used, and what the long-term consequences would be (politically, tactically, environmentally, economically, etc.) is an important exercise, even if it is sometimes labeled as morbid. Too often, I think, we close our minds to the very possibility. But “thinking the unthinkable” is valuable — not because it will make us more willing to use them, but because it highlights the limitations of their use, and helps us come to grips with what the actual consequences would be.

So would nuke have been useful in the Vietnam War? I think the JASON authors do a good job of showing that the answer is, “almost certainly not very useful, and possibly completely disastrous.” And knowing, as we do now and they did not in 1967, how much of a long-term blot Vietnam would be to US domestic and foreign policy in the years that followed, consider how much of a danger it would have posed if we had started letting little nukes fly on top of everything else.

Notes
  1. Michael Herr, Dispatches (Vintage, 1991 [1977]), 60-61. []
  2. Were they actually “right here in-country”? Apparently not, except on aircraft carriers nearby. Of course moving them into the war theatre would not have likely been very difficult. Still, it is an interesting wrinkle to Herr’s account — the colonels bragging to the journalists, assuming it occurred, was in part just bravado. []
  3. F. Dyson, R. Gomer, S. Weinberg, S.C. Wright, “Tactical Nuclear Weapons in Southeast Asia,” JASON Study S-266 (March 1967), originally posted online at Nautilus.org. []
  4. Ann Finkbeiner, The Jasons: The Secret History of Science’s Postwar Elite (New York: Viking, 2006), 93. []
Meditations

Castle Bravo at 60

Friday, February 28th, 2014

Tomorrow, March 1, 2014, is the 60th anniversary of the Castle Bravo nuclear test. I’ve written about it several times before, but I figured a discussion of why Bravo matters was always welcome. Bravo was the first test of a deliverable hydrogen bomb by the United States, proving that you could not only make nuclear weapons that had explosive yields a thousand times more powerful than the Hiroshima bomb, but that you could make them in small-enough packages that they could fit onto airplanes. It is was what truly inaugurated the megaton age (more so than the first H-bomb test, Ivy Mike, which was explosively large but still in a bulky, experimental form). As a technical demonstration it would be historically important even if nothing else had happened.

One of the early Bravo fallout contours. Source.

One of the early Castle Bravo fallout contours showing accumulated doses. Source.

But nobody says something like that unless other things — terrible things — did happen. Two things went wrong. The first is that the bomb was even more explosive than the scientists thought it was going to be. Instead of 6 megatons of yield, it produced 15 megatons of yield, an error of 250%, which matters when you are talking about millions of tons of TNT. The technical error, in retrospect, reveals how grasping their knowledge still was: the bomb contained two isotopes of lithium in the fusion component of the design, and the designers assumed only one of them would be reactive, but they were wrong. The second problem is that the wind changed. Instead of carrying the copious radioactive fallout that such a weapon would produce over the open ocean, where it would be relatively harmless, it instead carried it over inhabited atolls in the Marshall Islands. This necessitated evacuation, long-term health monitoring, and produced terrible long-term health outcomes for many of the people on those islands.

If it had just been natives who were exposed, the Atomic Energy Commission might have been able to keep things hushed up for awhile — but it wasn’t. A Japanese fishing boat, ironically named the Fortunate Dragon, drifted into the fallout plume as well and returned home sick and with a cargo of radioactive tuna. One of the fishermen later died (whether that was because of the fallout exposure or because of the treatment regime is apparently still a controversial point). It became a major site of diplomatic incident between Japan, who resented once again having the distinction of having been irradiated by the United States, and this meant that Bravo became extremely public. Suddenly the United States was, for the first time, admitting it had the capability to make multi-megaton weapons. Suddenly it was having to release information about long-distance, long-term contamination. Suddenly fallout was in the public mind — and its popular culture manifestations (Godzilla, On the Beach) soon followed.

Map showing points (X) where contaminated fish were caught or where the sea was found to be unusually radioactive, following the Castle Bravo nuclear test.

Map showing points (X) where contaminated fish were caught or where the sea was found to be unusually radioactive, following the Castle Bravo nuclear test. This sort of thing gets public attention.

But it’s not just the public who started thinking about fallout differently. The Atomic Energy Commission wasn’t new to the idea of fallout — they had measured the plume from the Trinity test in 1945, and knew that ground bursts produced radioactive debris.

So you’d think that they’d have made lots of fallout studies prior to Castle. I had thought about producing some kind of map with all of the various fallout plumes through the 1950s superimposed on it, but it became harder than I thought — there are just a lot fewer fallout plumes prior to Bravo than you might expect. Why? Because prior to Bravo, they generally did not map downwind fallout plumes for shots in Marshall Islands — they only mapped upwind plumes. So you get results like this for Ivy Mike, a very “dirty” 10.4 megaton explosion that did produce copious fallout, but you’d never know it from this map:

Fallout from the 1952 "Ivy Mike" shot of the first hydrogen bomb. Note that this is actually the "back" of the fallout plume (the wind was blowing it north over open sea), and they didn't have any kind of radiological monitoring set up to see how far it went. As a result, this makes it look far more local than it was in reality. This is from a report I had originally found in the Marshall Islands database.

To make it even more clear what you’re looking at here: the wind in this shot was blowing north — so most of the fallout went north. But they only mapped the fallout that went south, a tiny amount of the total fallout. So it looks much, much more contained than it was in reality. You want to shake these guys, retrospectively.

It’s not that they didn’t know that fallout went further downwind. They had mapped the Trinity test’s long-range fallout in some detail, and starting with Operation Buster (1951) they had started mapping downwind plumes for lots of tests that took place at the Nevada Test Site. But for ocean shots, they didn’t their logistics together, because, you know, the ocean is big. Such is one of the terrible ironies of Bravo: we know its downwind fallout plume well because it went over (inhabited) land, and otherwise they probably wouldn’t have bothered measuring it.

The publicity given to Bravo meant that its fallout plume got wide, wide dissemination — unlike the Trinity test’s plume, unlike the other ones they were creating. In fact, as I mentioned before, there were a few “competing” drawings of the fallout cloud circulating internally, because fallout extrapolation is non-trivially difficult:

BRAVO fallout contours produced by the AFSWP, NRDL, and RAND Corp. Source.

But once these sorts of things were part of the public discourse, it was easy to start imposing them onto other contexts beyond islands in the Pacific Ocean. They were superimposed on the Eastern Seaboard, of course. They became a stock trope for talking about what nuclear war was going to do to the country if it happened. The term “fallout,” which was not used even by the government scientists as a noun until around 1948,1 suddenly took off in popular usage:

Google Ngram chart of the usage of the word "fallout" in English language books and periodicals. Source.

Google Ngram chart of the usage of the word “fallout” in English language books and periodicals. Source.

The significance of fallout is that it threatens and contaminates vast areas — far more vast than the areas immediately affected by the bombs themselves. It means that even a large-scale nuclear attack that tries to only threaten military sites is also going to do both short-term and long-term damage to civilian populations. (As if anyone really considered just attacking military sites, though; everything I have read suggests that this kind of counter-force strategy was never implemented by the US government even if it was talked about.)

It meant that there was little escaping the consequences of a large nuclear exchange. Sure, there are a few blank areas on maps like this one, but think of all the people, all the cities, all the industries that are within the blackened areas of the map:

Oak Ridge National Laboratory estimate of "accumulated 14-day fallout dose patterns from a hypothetical attack on the United States," 1986. I would note that these are very high exposures and I'm a little skeptical of them, but in any case, it represents the kind of messages that were being given on this issue. Source.

Oak Ridge National Laboratory estimate of “accumulated 14-day fallout dose patterns from a hypothetical attack on the United States,” 1986. I would note that these are very high exposures and I’m a little skeptical of them, but in any case, it represents the kind of messages that were being given on this issue. Source.

Bravo inaugurated a new awareness of nuclear danger, and arguably, a new era of actual danger itself, when the weapons got big, radiologically “dirty,” and contaminating. Today they are much smaller, though still dirty and contaminating.

I can’t help but feel, though, that while transporting the Bravo-like fallout patterns to other countries is a good way to get a sense of their size and importance, that it still misses something. I recently saw this video that Scott Carson posted to his Twitter account of a young Marshallese woman eloquently expressing her rage about the contamination of her homeland, at the fact that people were more concerned about the exposure of goats and pigs to nuclear effects than they were the islanders:

I’ve spent a lot of time looking at the reports of the long-term health effects on the Marshallese people. It is always presented as a cold, hard science — sometimes even as a “benefit” to the people exposed (hey, they got free health care for life). Here’s how the accident was initially discussed in a closed session of the Congressional Joint Committee on Atomic Energy, for example:

Chairman Cole: “I understand even after they [the natives of Rongelap] are taken back you plan to have medical people in attendance.”

Dr. Bugher: “I think we will have to have a continuing study program for an indefinite time.”

Rep. James Van Zandt: “The natives ought to benefit — they got a couple of good baths.”

Which is a pretty sick way to talk about an accident like this, even if all of the facts aren’t in yet. Even for a classified hearing.

What’s the legacy of Bravo, then? For most of us, it was a portent of dangers to come, a peak into the dark dealings that the arms race was developing. But for the people on those islands, it meant that “the Marshall Islands” would always be followed by “where the United States tested 67 nuclear weapons” and a terrible story about technical hubris, radioactive contamination, and long-term health problems. I imagine that people from these islands and people who grew up near Chernobyl probably have similar, terrible conversations.

A medical inspection of a Marshallese woman by an American doctor. "Project 4," the biomedical effects program of Operation Castle was initially to be concerned with "mainly neutron dosimetry with mice" but after the accident an additional group, Project 4.1, was added to study the long-term exposure effects in human beings — the Marshallese. Image source.

A medical inspection of a Marshallese woman by an American doctor. “Project 4,” the biomedical effects program of Operation Castle was initially planned to be concerned with “mainly neutron dosimetry with mice” but after the accident an additional group, Project 4.1, was added to study the long-term exposure effects in human beings — the Marshallese. Image source.

I get why the people who made and tested the bombs did what they did, what their priorities were, what they thought hung in the balance. But I also get why people would find their actions a terrible thing. I have seen people say, in a flip way, that there were “necessary sacrifices” for the security that the bomb is supposed to have brought the world. That may be so — though I think one should consult the “sacrifices” in question before passing that judgment. But however one thinks of it, one must acknowledge that the costs were high.

Notes
  1. William R. Kennedy, Jr., “Fallout Forecasting—1945 through 1962,” LA-10605-MS (March 1986), on 5. []
Visions

Sakharov’s turning point: The first Soviet H-bomb test

Friday, January 31st, 2014

The Soviets set off their first megaton-range hydrogen bomb in November 1955. It was the culmination of many years of effort, in trying to figure out how to use the power of nuclear fission to release the power of nuclear fusion in ways that could be scaled up arbitrarily.1 The Soviet bomb was designed to be a 3-megaton warhead, but they set it off at half strength to avoid too much difficulty and fallout contamination. Unlike the US, the Soviets tested their version version by dropping it out of a bomber — it was not a big, bulky, prototype like the Ivy Mike device. But it was not an uneventful test. The details are little talked about, but it serves as an impressive parable about what can go wrong when you are dealing with science on a big scale.

Andrei Sakharov, from nuclear weapons designer to aged dissident.

Andrei Sakharov, from young nuclear weapons designer to aged dissident. Source.

Andrei Sakharov has a stunning chapter on it in his memoirs. It makes for an impressive story in its own right, but Sakharov also identifies the experience as a transformative one in his own thinking about the responsibility of the scientist, as he made his way from nuclear weapons designer to political dissident.2

Sakaharov starts out by talking about going to Kazakhstan to see the test. He had by this time been assigned two armed KGB officers, known euphemistically as “secretaries,” whose jobs were to act as bodyguards and “to prevent undesirable contacts.” Sakharov claims not to be have been too bothered by them. They lived next door.

The test of the device, code-named RDS-37, was to be the 24th Soviet nuclear test, and was the largest ever tested at the Semipalatinsk test site. This created several logistical difficulties. In order to avoid local nuclear fallout, it was going to be an airburst. The size of the bomb, however, brought up the possibility that it might accidentally blow the bomber that delivered it out of the sky. To avoid this, the bomber was painted white (to reflect the thermal radiation), and a big parachute was applied to the bomb so that the bomber could get away fast enough. Sakharov was satisfied enough with the math on this that he asked if he could ride along on the bomber, but the request was denied.

Sakharov’s account lingers on the incongruity between testing nuclear weapons in beautiful, wild places. Siberia was “a new and spellbinding experience for me, a majestic, amazingly beautiful sight.” He continued: “The dark, turbulent waters of the Irtysh, dotted with a thousand whirlpools, bore the milky-blue ice floes northward, twisting them around and crashing them together. I could have watched for hours on end until my eyes ached and my head spun. Nature was displaying its might: compared to it, all man’s handiwork seems paltry imitation.

The RDS-37 test device. Source.

The RDS-37 test device. Source.

A test trial-run on November 18th went smoothly, but the first test attempt, on November 20th, did not. As David Holloway recounts in Stalin and the Bomb, that same Siberian wintery majesty that dazzled Sakharov made for difficult testing conditions.3 The fully-loaded Tu-16 bomber had to abort when the test site was unexpectedly covered by clouds, making them unable to see the target aiming point and rendering the optical diagnostic systems inoperable. The plane was ordered to land, only now it had a fully-armed experiment H-bomb on board. There was concern that if it crashed, it could result in a nuclear yield… destroying the airfield and a nearby town. The airfield had meanwhile iced over. Igor Kurchatov, the lead Soviet nuclear weapons scientist, drove out to the airfield himself personally to see the airfield. Sakharov assured him that even if it crashed, the odds of a nuclear yield were low. An army unit at the airfield quickly worked to clear the runway, and so Kurchatov ordered the plane to land. It did so successfully. Kurchatov met the crew on the field, no doubt relieved. Sakharov recalls him saying, “One more test like [this one] and I’m retiring.” As for Sakharov, he called it “a very long day.”

Two days later, they gave it another go. This time the weather cooperated, as much as Siberian weather cooperates. The only strange thing was a temperature inversion, which is to say, at higher altitudes it was warmer than at lower altitudes, the opposite of the usual. The meteorologists gave the go-ahead for the testing.

Sakharov stayed at a laboratory building on the outskirts of a small town near the test site. An hour before the test, Sakharov saw the bomber rising above the town. It was “dazzling white,” and “with its sweptback wings and slender fuselage extending far forward, it looked like a sinister predator poised to strike.” He recalled that “for many peoples, the color white symbolizes death.” An hour later, a loud-speaker began the countdown.

The white bomber. Source.

The white bomber. Source.

Sakharov described the test in vivid detail:

This time, having studied the Americans’ Black Book4, I did not put on dark goggles: if you remove them after the explosion, your eyes take time to adjust to the glare; if you keep them on, you can’t see much through the dark lenses. Instead, I stood with my back to ground zero and turned around quickly when the building and horizon were illuminated by the flash. I saw a blinding, yellow-white sphere swiftly expand, turn orange in a fraction of a second, then turn bright red and touch the horizon, flattening out at its base. Soon everything was obscured by rising dust which formed an enormous, swirling grey-blue cloud, its surface streaked with fiery crimson flashes. Between the cloud and the swirling durst grew a mushroom stem, even thicker than the one that had formed during the first [1953] thermonuclear test. Shock waves crisscrossed the sky, emitting sporadic milky-white cones and adding to the mushroom image. I felt heat like that from an open furnace on my face — and this was in freezing weather, tens of miles from ground zero. The whole magical spectacle unfolded in complete silence. Several minutes passed, and then all of the sudden the shock wave was coming at us, approaching swiftly, flattening the feather-grass.

“Jump!” I shouted as I leaped from the platform. Everyone followed my example except for my bodyguard (the younger one was on duty that day); he evidently felt he would be abandoning his post if he jumped. The shock wave blasted our ears and battered our bodies, but all of us remained on our feet except for the bodyguard on the platform, who fell and suffered minor bruises. The wave continued on its way, and we heard the crash of broken glass. Zeldovich raced over to me, shouting: “It worked! It worked! Everything worked!” Then he threw his arms around me. […]

The test crowned years of effort. It opened the way for a whole range of devices with remarkable capabilities, although we still sometimes encountered unexpected difficulties in producing them.

But they soon learned that a bruised bodyguard was the least of the injuries sustained in the test. Scientists and soldiers had been stationed far closer to the blast than Sakharov was. The scientists were fine — they were lying flat on the ground and the blast wave caused them no injury. One of them lost his cool and ran away from the blast, but he was only knocked down by it. But a nearby trench held a platoon of soldiers, and the trench collapsed. One young soldier, in his first year of service, was killed.

RDS-37 detonation

RDS-37, detonating. This is considerably sped up; it shows about 50 seconds of footage compressed into only a few seconds. Video source here.

There was also a nearby settlement of civilians affected by the blast wave. In theory it was at a distance remote enough to avoid anything serious; this had been calculated. But the aforementioned inversion layer reflected the shock wave back down to Earth with unusual vehemence — underscoring how even a little misunderstanding of the physics can translate into real problems when you are talking about millions of tons of TNT (something learned by the US a year earlier, at the Castle Bravo test). The inhabitants of the town were in a primitive bomb shelter. After the flash, they exited to see the cloud. Inside the shelter, however, was left a two-year-old girl, playing with blocks. The shock wave, arriving well after the flash, collapsed the shelter, killing the child. 

The ceiling of a woman’s ward of a hospital in another nearby village collapsed, seriously injuring many people. Glass windows broke at a meat-packing plant a hundred miles from the test site, sprinkling ground beef with splinters. Windows broke throughout the town where Sakharov was stationed.

RDS-37, seen from a local town. Also sped up. Same source as the previous.

The consequences of an explosion are hard to predict,” Sakharov concluded.

Had we been more experienced, the temperature inversion would have caused us to delay the test. The velocity of the shock wave increases as the temperature does: if the air temperature rises with altitude, the shock wave bends back towards the ground and does not dissipate as fast under normal conditions. This was the reason the shock wave’s force exceeded our predictions. Casualties might have been avoided if the test had been conducted as scheduled on November 20, when there was no temperature inversion.

As with Castle Bravo, there was a grim, almost literary connection between technical success and human disaster. They had shown the way forward for deployable, multi-megaton hydrogen bombs, but with a real cost — and that cost only an insignificant hint of what would happen if the weapons were used in war. Sakharov concluded:

We were stirred up, but not just with the exhilaration that comes with a job well done. For my part, I experienced a range of contradictory sentiments, perhaps chief among them a fear that this newly released force could slip out of control and lead to unimaginable disasters. The accident reports, and especially the deaths of the little girl and the soldier, heightened my sense of foreboding. I did not hold myself personally responsible for their deaths, but I could not escape a feeling of complicity.

That night, the scientists, the politicians, and the military men dined well. Brandy was poured. Sakharov was asked to give the first toast. “May all of our devices explode as successfully as today’s, but always over test sites and never over cities.”

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

The immediate response was silence. Such things were not to be said. One of the military higher-ups flashed a crooked grin, and stood to give his own toast. “Let me tell a parable. An old man wearing only a shirt was praying before an icon. ‘Guide me, harden me. Guide me, harden me.’ His wife, who was lying on the stove, said: ‘Just pray to be hard, old man, I can guide it myself.’ Let’s drink to getting hard.

Sakharov blanched at the crudity (“half lewd, half blasphemous”), and its serious implications. “The point of his story,” he later wrote, “was clear enough. We, the inventors, scientists, engineers, and craftsmen, had created a terrible weapon, the most terrible weapon in human history; but its use would lie entirely outside our control. The people at the top of the Party and military hierarchy would make the decisions. Of course, I knew this already — I wasn’t that naive. But understanding something in an abstract way is different from feeling it with your whole being, like the reality of life and death. The ideas and emotions kindled at that moment have not diminished to this day, and they completely altered my thinking.

Notes
  1. The Soviets tested their first thermonuclear bomb in 1953, the RDS-6s, which used fusion reactions. But it was not a true, multi-megaton capable hydrogen bomb. The 1953 device was “just” a very, very big boosted bomb, where 40 kilotons of fissioning produced 80 kilotons of fusioning which in turn produced another 280 kilotons of fissioning, for 400 kilotons total. The design could not be scaled up arbitrarily, though, and it did not use radiation implosion (like the Teller-Ulam design, known in the USSR as the “Third Idea.” It was a big bomb, but the 1955 test was the design that became the basis for their future nuclear warheads. []
  2. Andrei Sakharov, Memoirs, trans. Richard Lourie (New York: Knopf, 1990), 188-196. []
  3. David Holloway, Stalin and the bomb: The Soviet Union and atomic energy, 1939- 1956 (New Haven: Yale University Press, 1994), 314-316. []
  4. From elsewhere in the Memoirs, it seems that Sakharov may be referring here to the 1950 edition of Samuel Glasstone’s The Effects of Atomic Weapons. There was a hardcover edition that apparently had a black cover. Sakharov notes that the nick-name only “partly” came from the cover; he implies that the contents are “black” as well. However there is nothing about goggles or glare in the version of the text I have, so maybe it is something different. []