Posts Tagged ‘Los Alamos’

Visions

Women, minorities, and the Manhattan Project

Friday, November 27th, 2015

One of the things I most appreciate about the writers of the show Manhattan is that they took the effort to get beyond the standard, most common vision of the "Los Alamos scientist." Several of the leading characters are female scientists, good at what they do, good at navigating a profession dominated by men. In the first season, one of the scientists was Chinese-American, and there is also a recurrent character in both the first and second season who is African-American, played with intelligence, dignity, and self-awareness.

Drs. Helen Prins (Katja Herbers), , and Charlie Isaacs (Ashley Zuckermann) at the Oak Ridge X-10 reactor from Manhattan episode 107.

Drs. Helen Prins (Katja Herbers), Theodore Sinclair (Corey Allen), and Charlie Isaacs (Ashley Zuckerman) at the Oak Ridge X-10 reactor from Manhattan episode 107.

The textbook version of Los Alamos, and the Manhattan Project as a whole, is a bunch of genius white, male scientists (the Europeans getting the designation of "Jewish" and sometimes another nationality, i.e. "Hungarian"), who have largely been deracinated (not a yarmulke to be seen, not a religious belief to be referenced, except maybe Oppenheimer's dabbling with Hindu mysticism). Women enter in the picture largely as wives, secretaries, and the operators of Calutrons, ignorant of their true roles. Non-whites are basically eliminated, with the exception of the Indians who served as menial laborers at Los Alamos. This is a view of "who matters" taken largely from the 1940s — it is how the earliest chroniclers of the Manhattan Project saw their world. The one exception to this is Lise Meitner, who was triumphed in the early days of the atomic bomb, largely because of irony in her having had to flee Germany, but also, I suspect, at the irony of her having been a woman.

The historical reality is a much more textured one. There were actually many women contributing to the technical side of the bomb — not just as Calutron operators, either, but as physicists, chemists, biologists, and mathematicians, among other scientific specialities. One of the most overlooked books on the history of the bomb is Ruth H. Howes and Caroline L. Herzenberg's Their Day in the Sun: Women and the Manhattan Project (Temple University Press, 1999), and it chronicles the lives of many of the women who worked on the project. Along with their stories of individual lives, they also dig into the numbers:

In September 1943, some sixty women worked in the Technical Area at Los Alamos. By October 1944, about 30 percent, or 200 members of the labor force in the Tech Area, the hospital, and the schools were women. Of these, twenty could be described as scientists and fifty as technicians. Fifteen women worked as nurses, twenty-five as teachers, and seventy as secretaries or clerks.

Although many women's precise job titles at Los Alamos remain unknown, rough numbers show about twenty-five of them working on chemistry and metallurgy, twenty on bomb engineering, sixteen on theoretical physics, four on experimental physics, eight on ordnance, and four on explosives. Two women worked with Enrico Fermi, who had moved to Los Alamos when it opened in 1943. These numbers are given by divisional assignment instead of by job title, so a few of these women may have held clerical jobs, but it's clear that most of them were scientists or technicians.

The number of women working on the Manhattan Project contrasts sharply with the Apollo Project of the 1960s, which was comparable in size and scope. At its peak in 1965, when Apollo engaged 5.4 percent of the national supply of scientists and engineers, women accounted for only 3 percent of NASA's scientific and engineering staff.1

The latter part is kind of a kicker for me: more women worked on the bomb than worked on the program to get Americans on the Moon. Why such a disparity? Because during World War II, the need for scientific labor was desperate and spread among many projects. It's hard to be a bigot when you need every ounce of brainpower and labor you can get, and indeed World War II is famous overall for its movement of women into spaces they had previously been excluded (i.e. Rosie the Riveter). By the late 1950s and mid-1960s, though, the traditional gender norms had been reinstated, and the problem of technical labor shortages had been largely addressed by massive campaigns to increase the numbers of scientists and engineers in the United States.2 As advertisements from the later period suggest, the role of the space-age woman was as the helpful wife — not the person doing the calculations.

A relatively young Katharine ("Kay") Way. Source: Emilio Segrè Visual Archives.

A relatively young Katharine ("Kay") Way, one of the many female scientists of the Manhattan Project, and one of the rare few scientists whose work took her to all of the major Manhattan Project sites. Source: Emilio Segrè Visual Archives.

There are a lot of interesting lives there, generally ignored when we tell these stories. Katharine Way is one of my favorites. She had a PhD in nuclear physics from University of North Carolina, having been John Wheeler's first graduate student. She worked on neutron sources at the University of Tennessee early in the war, and, hearing rumors of a big project at Chicago, called up Wheeler and talked her way into the Metallurgical Laboratory. There she worked on many topics key to the operation of reactors: neutron fluxes, "poisoning" by fission products, reactor constants, and eventually the Way-Wigner formula for fission-product decay. Her work was important enough for her to warrant visits to Hanford, Oak Ridge, and Los Alamos — a remarkable feat given the high levels of compartmentalization (many of the scientists who worked at any one of the sites were not allowed to know where the other ones were located). Even before Hiroshima, she questioned the morality of the weapon she had helped produce (signing Szilard's petition against its use), and in the postwar she was a key player in the postwar Scientists' Movement, co-editing One World or None with Dexter Masters in 1946.3

The Manhattan character Helen Prins, played by Katja Herbers, reminds me of Way, in terms of the arc of her narrative: her gumption (imagine talking yourself onto the Manhattan Project!); the way in which, despite being relatively low in the hierarchy, her work touches on enough key problems that it leads her all over the place (which works well for a plot, but it somewhat true to life as well), and the way in which she, like many others who worked enthusiastically during the war, came to doubts about the uses to which their science had been put.

Chien-Shiung Wu at the Smith College Laboratory in the 1940s, shortly before joining the Manhattan Project. She is working on an electro-static (Van De Graaff) generator. Source: Emilio Segrè Visual Archives.

Chien-Shiung Wu at the Smith College Laboratory in the 1940s, shortly before joining the Manhattan Project. She is working on an electro-static (Van De Graaff) generator. Source: Emilio Segrè Visual Archives.

There were also minorities on the project in technical roles, though here the lack of equal opportunity is far more stark and evident. Chien-Shiung Wu, a Chinese-born physicist, completed her dissertation in physics under Ernest Lawrence at UC Berkeley in 1940. After receiving a phone call from none other than Enrico Fermi, she was the one who identified Xenon-135 as a fission-product that was causing the Hanford reactors to lose their reactivity over time (this is the so-called "poisoning" effect). She also worked with Harold Urey on the problem of gaseous diffusion while at Columbia University, among other things. She would later become the first female president of the American Physical Society, in 1975.4

The Manhattan Project had very large numbers of African-Americans, but they were mostly working at Oak Ridge and Hanford as laborers or janitors. Peter Hales' Atomic Spaces: Living on the Manhattan Project (University of Illinois Press, 1999) has a thoroughly interesting chapter on the "Others" of the bomb work, including African-Americans, Mexican-Americans, Native Americans, and women. Oak Ridge was rigidly segregated during the war, with crude "Negro hutments" that held five men or six women in a single room (white hutments were similarly crude, but only had four occupants). The history of segregation at Oak Ridge is quite interesting — Groves apparently issued orders for a "separate but equal" set of accommodations, but his subordinates instead clearly saw the goal as creating a "Negro shantytown." Hanford housing was also segregated, but accommodations were generally better, although in many ways the African-American laborers received fewer perks than the white ones (for example, in terms of recreational facilities built for them). These differences among sites were largely the difference of one being in located in Jim Crow Tennessee and the other in Washington State.5

Met Lab chemist Moddy Taylor (photo from 1960) — not the "typical" image of a Manhattan Project scientist. Source: Smithsonian Institution, National Museum of American History.

Met Lab chemist Moddy Taylor — not the "typical" image of a Manhattan Project scientist. Photo from 1960. Source: Smithsonian Institution, National Museum of American History.

There were a few African-American scientists on the Manhattan Project. Samuel P. Massie, Jr., worked at Iowa State University on uranium chemistry for use in enrichment work. Jasper Jeffries worked as a physicist at the Metallurgical Laboratory, and was one of the signatories of Leo Szilard's petition to not use the bomb on a city without warning. Benjamin Franklin Scott worked as a chemist at the Met Lab in their instrumentation and measurements section. Moddie Taylor also did chemistry at the Met Lab, analyzing rare-earth metals. There are several others — the American Institute of Physics has a nice compilation of biographies on their website — mostly centered around the University of Chicago. With any kind of "omitted" history of this sort, one wants to honor them without overstating their importance or underestimating the effects of institutionalized exclusion.6

As a side-note, I was asked by a reporter last summer whether there were any known cases of lesbian, gay, bisexual, or transgendered (LGBT) on the Manhattan Project. This is a tricky thing to answer. There were some half a million people working on the bomb across all of its many sites — some number of them had to be LGBT based on whatever prevalence one thinks existed in the population at that time. Even if it was only 1% (which is very conservative), that would allow for 5,000 individuals across the entire project. The populations of present-day US states range from around 2% to over 5% in self-identification as LGBT, so that is quite a lot more people (especially if we acknowledge that even at our current point in time, there are certainly many people in the closet or in a state of self-denial). Of course, in the 1940s homosexuality was categorized as a psychiatric disorder and by the late 1940s it was considered a serious security risk (the "Lavender scare"). To be public about such a thing would not be conducive to working on top-secret war work, to say the least — so there had to have been quite a lot of people who were in the closet.

Alumni of the creation of the first nuclear reactor, CP-1, at the University of Chicago's Metallurgical Laboratory. Leona Woods Marshall is conspicuously outside the norm, but there nonetheless. Source: Emilio Segrè Visual Archive.

Alumni of the creation of the first nuclear reactor, CP-1, at the University of Chicago's Metallurgical Laboratory. Leona Woods Marshall is conspicuously outside the norm, but part of the crew nonetheless. Source: Emilio Segrè Visual Archive.

The issue of women and minorities in STEM fields is still a real one. For those who smugly believe that large portions of the population simply don't have the ability to contribute on technical matters, I have found Neil deGrasse Tyson's discussions of his own difficulties as an African-American interested in astrophysics to be a useful reference. In the case of the Manhattan Project, there are interesting trends. At times things were more open on the bomb work, for women in particular, because they could not afford to write off brainpower of a certain type. For issues of labor, however, the local cultures — New Mexico, Washington, and Tennessee — all came through largely as you would expect them to.

The initial stories about the making of the bomb, however, largely wrote out all non-male, non-whites from the story. Partially this was a real recapitulation of the the hierarchy in place: there were women and there were minorities, but they didn't generally get to run things, and the story of making the bomb was often about who was running things. But partially this was about the biases of the time, and what was considered acceptable from the perspective of the storytellers (and, arguably, society itself — imagine if a woman or minority had tried to get away with Feynman's hijinks, whether they would be treated as amusing or not). There has been a lot of good work expanding our understanding of who made the bomb in the last 15 years, though it has not quite unseated the popular vision of a handful of brainy white men creating a weapon out of sheer cleverness and equations alone.

Notes
  1. Emphasis added. Ruth H. Howes and Caroline L. Herzenberg, Their Day in the Sun: Women and the Manhattan Project (Philadelphia: Temple University Press, 1999), 13-14. []
  2. On the latter, see the work of David Kaiser on the booms and busts in the sciences from Sputnik onward. []
  3. Howes and Hertzenberg, 42-43. []
  4. Howes and Hertzenberg, 45-46. []
  5. Peter Bacon Hales, Atomic Spaces: Living on the Manhattan Project (Urbana: University of Illinois Press, 1999), chapter 7. []
  6. There is a very nice paper online about African-American scientists and the atomic bomb: Shane Landrum, "'In Los Alamos, I feel like I'm a real citizen': Black atomic scientists, education, and citizenship, 1945-1960," (Brandeis University, 2005). There is a bit of literature on African-American responses to the bomb, as well: see, e.g., Abby Kinchy, "African Americans in the Atomic Age: Postwar Perspectives on Race and the Bomb, 1945–1967," Technology and Culture 50, no. 2 (2009), 291-315. []
Redactions

Here be dragons

Friday, November 20th, 2015

The most famous experiment conducted by Los Alamos during the Manhattan Project, after the Trinity test itself, is the one with the most evocative name. “Tickling the Dragon’s Tail,” also known internally as just “Dragon,” is straightforward about its meaning, compared to the enigma of “Trinity.” Dragons don’t like to have their tails tickled — so watch out for the fire.

On the latest episode of Manhattan (204), protagonist Frank Winter encounters the "dragon" — and pushes it a little further than he ought to have.

On the latest episode of Manhattan (206), protagonist Frank Winter encounters the "dragon" — and pushes it a little further than he ought to have.

The “dragon” moniker was coined by Richard Feynman (who else?) after he heard about it from fellow scientist Otto Frisch. It was one of a category of criticality experiments that Frisch (nephew of Lise Meitner, co-author of the famous Frisch-Peierls report) was working on at Los Alamos. Criticality experiments were dangerous by design: they were attempts to experimentally determine the critical condition of different quantities, types, and geometries of fissile material. Because of the unknowns involved, all of these experiments involved pushing very close to the boundary of an uncontrolled fission chain reaction, an embryonic atomic bomb (or reactor) that, while probably not very explosive (it would likely destroy itself before too much energy was released), would create enough radioactivity to cause serious hazard to those working around the site.1

The experiment Feynman dubbed “dragon” was what Frisch had called the “guillotine,” and was one of the more ambitious and dangerous of Frisch’s many criticality experiments. It involved dropping a slug of enriched uranium hydride through an almost-critical assembly of the same substance. Gravity alone would cause the two pieces to briefly form a critical mass — and then to briefly un-form, before too many fission reactions had occurred. If all worked as planned, the slug would release a burst of neutrons and then stop reacting. But if the slug got stuck in the critical figuration, it would release impressive amounts of radioactivity and potentially cause a (very small) explosion.2

Otto Frisch's original "dragon" reactor — the uranium "guillotine." Source: R.E. Malenfant, "Experiments with the Dragon Machine" (LA-14241-H, August 2005).

Otto Frisch's original "dragon" reactor — the uranium "guillotine." Source: R.E. Malenfant, "Experiments with the Dragon Machine" (LA-14241-H, August 2005).

The experiments could produce upwards of 20 million watts worth of energy, increasing the temperature of the fuel by 2 degrees C per millisecond. At their most daring, one burst of the experiment released 1015 neutrons. These experiments were, as the official, secret Manhattan District History notes, “of historical importance,” as they constituted “the first controlled nuclear reaction which was supercritical with prompt neutrons alone.” As far as I can tell, this particular “guillotine” was the original experiment that earned the nickname “dragon,” but the name has been applied to other, similarly close-to-critical experiments as well.3

Criticality experiments were inherently dangerous. They didn’t have to kill you immediately to be a threat: it had been known since the days of the “Radium Girls” that radiation exposure could be cumulatively crippling. The experimental physicists by the 1940s had lost a bit of the “devil may care” air that they had in the early years of radioactivity, when you could spot an X-ray operator by his mangled hands. The Health Group at Los Alamos attempted to keep external radiation exposures within the national radiation standards at the time (0.1 roentgens per day), and optimistically hoped they could aim for zero internal exposures per day. For the time, this was considered conservative, though by the late 1950s the standards for exposure had dropped by a factor of seven.4

Los Alamos scientists keep their distance from a 1,000 ci radiation source used in the RaLa experiments.

The first criticality accident at Los Alamos wasn’t a fatal one, but it did cause some trouble. The experiment was (ironically, or appropriately?) made in the name of safety: it was a question of what would happen if certain geometries and enrichments of uranium were submerged in water. For a weapon that was going to be deployed to the Pacific Ocean, this was not an idle danger — sink Little Boy in the ocean and it becomes a nuclear reactor, because, for enriched materials, regular “light” water acts as a neutron moderator, lowering the effective critical mass. The Manhattan District History outlines the experiment and its outcome:

A large amount of enriched uranium, surrounded by polythene, had been placed in a container in which water was being slowly admitted. The critical condition was reached sooner than expected, and before the water level could be sufficiently lowered the reaction became quite intense. No ill effects were felt by the men involved, although one lost a little of the hair on his head. The material was so radioactive for several days that experiments planned for those days had to be postponed. [emphasis added]5

“Although one lost a little of the hair on his head” — one of those sentences one rarely runs across, especially without any further elaboration, that really sounds disturbing to the modern ear. There were other “minor” exposures too, noted briefly (and anonymously) in the Manhattan District History. Not all were related to criticality; some were related to other experiments, such as the “water boiler” and “power boiler” reactors (more on those in a second), and the RaLa (Radiolanthanum) implosion experiments:

Operation of the power boiler resulted in several instances of mild overexposure to radiation caused by leaks in the exhaust gas line and one serious exposure of several chemists during decontamination of active material. The implosion studies of the RaLa Group which used large amounts of radioactive barium and lanthanum brought a serious situation which the health group monitored closely. A series of accidents and equipment failures caused considerable overexposure of chemists in this group. This condition persisted about six months until the system of remote control operation was finally perfected.6

Interestingly, the Health Group had “no responsibility” over the criticality experiments, “except that of being sure that the men were aware of the dangers involved.” The Manhattan District History notes that the criticality experiments were “especially dangerous” because “there is no absolute way of anticipating the dangers of any particular experiment, and the experiments seem so safe when properly carried out that they lead to a feeling of overconfidence on the part of the experimenter.” The author of this section of the History attributes this overconfidence to the death of Harry Daghlian, who died after accidentally creating a critical mass with a plutonium core. It also notes another accident where “four individuals” received an “acute exposure… to a large amount of radiation” during a similar experiment. The same core would lead to the death of another scientist, Louis Slotin (known for his nonchalance regarding the hazards), less than a year later.7

Harry K. Daghlian's blistered and burnt hand after he received his fatal radiation dose from his own dragon-tickling experiment gone wrong.

Harry K. Daghlian's blistered and burnt hand after he received his fatal radiation dose from his own dragon-tickling experiment gone wrong.

Reading through the various exposures and radiation hazards in the Manhattan District History can be a bit spine-tingling, even if one tries to have a measured view of the threats of radiation. Radiation risks, of course, are more exciting to most of us than the dozens of other ways to die at Los Alamos during the war. Radiation is relatively exotic and mysterious — simultaneously invisible to our basic senses while very easy to track and follow with the right instruments. You can’t see it until you start looking for it, and then you can find it everywhere.

But even with that caveat, some of these reports are still pretty eyebrow raising. One example: The “water boiler” reactor was a small assembly of enriched uranium used as a neutron source at the laboratory. The scientists knew it presented radiation risks: the fuel inside the reactor would get fiendishly radioactive during and after operation, and if there was a small, inadvertent explosion, it could be a real contamination problem. So they (sensibly) isolated it from the rest of the laboratory, along with the criticality experiments.8

But later study showed that they hadn’t quite solved the problem. Gaseous materials, including fission products, were being discharged “near the ground level at the tip of the mesa just to the south of Los Alamos Canyon.” This, the Manhattan District History notes, was “most unsatisfactory and represented a potential and serious health hazard.” They had warning signs, but they were “inadequate and the area was accessible to any casual visitor.” Radiation intensities “in excess of 50 r/hr were repeatedly measured near the discharge point when the boiler was in operation.” Just to put that into perspective, even by the relatively lax standards of the Manhattan Project, you would hit your yearly limit of acceptable radiation exposure if you spent about 45 minutes near the discharge point when the reactor was running. By the standards from the late 1950s onward, you would hit your yearly limit after only six minutes. (The committee recommended to put a fence around the area, and looking into building a large smoke stack. Later work determined that the larger smoke stack improved things a bit, but did not ultimately solve the problem.)9

The "Water Boiler" reactor at Los Alamos — a neat scientific experiment, but watch where you put the exhaust port. Source: Los Alamos Archives (12784), via Galison 1998.

The "Water Boiler" reactor at Los Alamos — a neat scientific experiment, but watch where you put the exhaust port. Source: Los Alamos Archives (12784), via Galison 1998.

Did these cavalier radiation exposures have long-term consequences for the scientists? (Other, of course, than the two who actually died, or the few people whose acute radiation exposures were so high that they produced obvious physical damage.) Remarkably, very little follow-up seems to have been made. It takes work to know whether there are hazards, and it takes even more work (longitudinal studies, epidemiological work, etc.) to see whether there have been health effects. Radiation-based cancers are probabilistic; exposures to radiation just increases the chance of a cancer, it doesn’t guarantee it. Epidemiological studies, like the ones done on the Japanese who survived the attacks on Hiroshima and Nagasaki, look for the statistical excesses, the cancers beyond what you would expect to naturally occur in a given population. This apparently was never done for Manhattan Project employees. There are many anecdotes about exposed employees developing debilitating health effects, but little hard science — not because the exposures or consequences didn’t happen, but because apparently nobody did the studies necessary to establish their existence.10

Why wouldn’t the Manhattan Project or Atomic Energy Commission officials follow up on this question? Two interrelated and non-exclusive hypotheses immediately spring to mind. One is that they were genuinely rather sanguine about the effects of radiation in low exposures. Their standards for “low exposures” were considerably higher than ours are today, and the requirements of war didn’t encourage them to adopt the precautionary principle, to say the least. The second is that there were legal stakes involved. They were eager, especially in the postwar, to avoid claims of radiation damage from former employees. Partially one can see in this the attitude of the bureaucrat who believes they are protecting the government’s interests (at the expense of labor’s), partially this is another reflection of the aforementioned sanguinity regarding radiation exposure (they legitimately believed the claims were probably false, or at least not provable). Following the community of scientists, technicians, and laborers after they had left the laboratory would have been difficult. And what if they had found higher-than-normal rates of injury and death? Better not to look at all, from that standpoint.11

Notes
  1. One of the key factors in designing an actual atomic bomb is holding together the reacting mass as long as possible. Without that, once enough energy has been released to separate the reacting material, the reaction will stop. So a chain-reacting critical assembly ought not release more than a few pounds of TNT worth of explosive power — but it would release an awful lot of radiation in the immediate area. []
  2. On Feynman and Frisch, and Frisch’s earlier experiments, see Richard Rhodes, Making of the Atomic Bomb (Simon and Schuster, 1986): 610-611. The description of “dragon” and its dangers in this paragraph comes from Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), 15.7. For an example of the size of the explosion, consider the effect of the accidental criticality excursion on another such device, “Godiva.” []
  3. Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), 15.8. The “dragon” experiment had one criticality “excursion” of note, when towards the end of a series of experiments of increasing power, a burst of 6 x 1015 fission reactions occurred, blistering and swelling the cubes that composed the assembly. No one was exposed and there was no contamination, but it got put into a criticality accident report. United States Atomic Energy Commission, Operational accidents and radiation exposure experience within the United States Atomic Energy Commission (Washington, DC: Atomic Energy Commission, Division of Operational Safety, 1975), 38. []
  4. The 0.1 roentgens per day (so around 37 r per year) standard for whole-body exposure was adopted by the United States in 1934. By 1946, the US had dropped the standard by half that amount. By the late 1950s, the standard for permissible amount of radiation exposure had dropped to around 5 r per year, where it remains for people who work in nuclear settings (the standard for the general public is lower). Note that in the 1940s the roentgen unit changed to the rem, and is now measured in sieverts, but they are pretty easy to convert (~1 r = 1 rem = 0.01 Sv). See George T. Mazuzan and J. Samuel Walker, Controlling the Atom: The Beginnings of Nuclear Regulation 1946-1962 (Washington, DC: Nuclear Regulatory Commission, 1997), 35, 39, and 54. On Manhattan Project standards, see Vincent C. Jones, Manhattan: The Army and the Atomic Bomb (Washington, DC: Center of Military History, United States Army, 1985), 419, and Barton C. Hacker, The Dragon's Tail: Radiation Safety in the Manhattan Project, 1942-1946 (Berkeley: University of California Press, 1987). Separately, it is of interest that the “Radium Girls” was not just an oblique connection: scientists from Los Alamos, Chicago, and Oak Ridge visited a luminous (radium) paint company in Boston to learn how they dealt with radiation hazards in industry, and adapted their techniques to the problems of dealing with plutonium. Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), 3.95. []
  5. Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), 15.10-15.11. The accident in question took place in June 1945, involved 35.4 kg of 83% enriched uranium cubes. United States Atomic Energy Commission, Operational accidents and radiation exposure experience within the United States Atomic Energy Commission (Washington, DC: Atomic Energy Commission, Division of Operational Safety, 1975), 37-38. []
  6. Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), 9.34. []
  7. Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), 9.34. []
  8. Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), 6.60. []
  9. Manhattan District History, Book VIII (Los Alamos Project), Volume 2 (Technical), Supplement, 2.85. []
  10. There have been some very small-sample studies of very specific cohorts from this period, but nothing of the sort one might imagine might exist. []
  11. Gabrielle Hecht’s Being Nuclear: Africans and the Global Uranium Trade (Cambridge, Mass.: MIT Press, 2012) emphasizes, in the case of exposures from uranium mining in Africa, that the easiest way to avoid worrying about radiation exposures is not to measure them, not to do the work that makes them “exist” as observable scientific facts. []
Visions

The doubts of J. Robert Oppenheimer

Friday, November 6th, 2015

The latest episode of Manhattan (Ep. 204) pivoted on the internal conflicts of J. Robert Oppenheimer. The standard, popular version of Oppenheimer as Los Alamos Director is one of infinite competence, confidence, and charm. The reality of Oppenheimer as a whole, much less Oppenheimer at Los Alamos, is a far more complex one.

Early on in my education, one of my advisors warned me against careless labeling of historical actors as "complex" or "complicated" without explaining what exactly I meant by that. In this sense, I think what it means is, this is a person who acts in contradictory, not-always-predictable ways — a person who breaks the standard narrative arc we might want to tell about their life. Oppenheimer is someone whose close examination refuses to fit into a simple narrative of heroism, tragedy, or comedy. In other words, he was a real person. And as T.H. White put it: "It is difficult to write about a real person."

Oppenheimer as rich-rugged-cowboy-Hindu-Jewish-intellectual. At his ranch, "Perro Caliente," with Ernest Lawrence in 1931. Source: Emilio Segrè Visual Archives.

Oppenheimer as rich-rugged-cowboy-Hindu-Jewish-intellectual. At his ranch, "Perro Caliente," with Ernest Lawrence (cropped out of frame) in 1931. Source: Emilio Segrè Visual Archives.

Oppenheimer's longtime friend, the physicist I.I. Rabi, later said that the core conflict of Oppenheimer’s personality was a search for identity. It was a perceptive remark. As to which of the many visible Oppenheimers was the "real" one, he suggested that, "Robert doesn’t know himself." Oppenheimer was, Rabi would later put it, "a man who was put together of many bright shining splinters."1

Consider the oft-told Oppenheimer biographical details in this light. Oppenheimer grew up on the Manhattan’s Upper West Side, in a family of wealthy, secular, German-Jewish immigrants. This, in and of itself, seems to have driven a lot of Oppenheimer’s initial search for a new identity. He apparently was embarrassed by his father’s hands-on approach to wealth (he was a textile merchant, so nouveau riche of a sort), embarrassed by his father’s approach to secularism (his enthusiastic embrace of Felix Adler’s Ethical Culture philosophy), and simultaneously embarrassed by his Jewishness. He went to Harvard during one of its peak moments of anti-Semitism (the year he started was marked with embroiled public discussions about Harvard’s Jewish quotas), and found himself a socially-awkward exile among blue-bloods from old-American families.

His escape from the identity he was born into was to embrace something entirely different. He found friends who to him represented what a "true American" intellectual might look like — rugged, earthy, wealthy men from New Mexico. Hence Oppenheimer’s great Southwestern obsession, the one that led to the Los Alamos laboratory being situated where it was. What is more of an antonym to “rich Manhattan Jewish German immigrant” than “rugged Southwestern cowboy”? His interest in Hinduism, Sanskrit, and the Bhagavad-Gita might be filed under this antonymic approach to identity as well: leaving behind both the traditional sacred of his heritage (Jewishness) and the Western secularism of his upbringing (Ethical Culture) by embracing the oriental mysticism of Far Eastern philosophy.

Oppenheimer, Enrico Fermi, and Ernest Lawrence at UC Berkeley, ca. 1939. Note that Oppenheimer has clearly not yet taken on the identity of Scientific Director yet — too much hair. All three of these physicists would eventually recommend dropping the atomic bomb on a civilian target. Source: Emilio Segrè Visual Archives.

Oppenheimer, Enrico Fermi, and Ernest Lawrence at UC Berkeley, ca. 1939. Note that Oppenheimer has clearly not yet taken on the identity of Scientific Director yet — too much hair. All three of these physicists would eventually recommend dropping the atomic bomb on a civilian target. Source: Emilio Segrè Visual Archives.

One of the more puzzling episodes in Oppenheimer’s life is related to ones of these identity crises. After graduating from Harvard, Oppenheimer went abroad to continue his physics education as a graduate student. He choose his initial venue poorly: he went to Cambridge, in England, where the kind of physics they were interested in was not to his liking (he was doing experimental physics, and he was terrible at it), and he found British class culture even more exclusive and stifling than Harvard's had been. Oppenheimer experienced a series of crises and failures. The culmination of one of these involved him rushing back to Cambridge, telling his friends that he had laid a “poisoned apple” on the desk of the physicist P.M.S. Blackett. Blackett represented everything Oppenheimer could not be in England: successful experimentalist, movie-star handsome, and well-integrated into British class society. Was this “poison” real, imagined, or metaphorical? Nobody is quite sure — Blackett apparently suffered no physical ill, in any case.

Oppenheimer overcame this crisis and found a way forward, eventually by leaving England and studying instead on the European continent. There he learned the new theoretical physics (quantum mechanics), which he excelled at and emerged as an admired wunderkind. It was in this period, on the continent, that the character of “Oppie” (originally “Opje” in Dutch) was created: mathematically and physically adventurous, confident, quick-witted, eccentric, intellectually ambidextrous.

This trying-on of identities can help explain some of Oppenheimer’s wartime behaviors as well. Oppenheimer-as-Scientific-Director was on of his most successful costume changes, in retrospect, but it was a daring risk for him. General Groves gave him the job despite the fact that Oppenheimer lacked any real administrative experience, much less any practical experience in building anything. Oppenheimer also had extreme liabilities in his past and present: one of his identities in the 1930s had been of a “fellow traveler” to many Communists and Communist-associates in his life, including, but not limited to, his wife (Kitty), his brother (Frank), his friends (Haakon Chevalier), his girlfriend and later mistress (Jean Tatlock — more on her in a future post), and his graduate students.

Oppenheimer, General Leslie Groves, and University of California President Robert Sproul, at the Army-Navy "E" Award ceremony in October 1945, recognizing the work of Los Alamos in developing the firt atomic bombs. Source: Los Alamos.

Oppenheimer, General Leslie Groves, and University of California President Robert Sproul, at the Army-Navy "E" Award ceremony in October 1945, recognizing the work of Los Alamos in developing the first atomic bombs. Source: Los Alamos National Laboratory.

These liabilities were known by Groves and others in the Manhattan Project security apparatus. They may have been one of the reasons Oppenheimer was an appealing choice for the job — he was moldable, he was relatively compliant, and these liabilities gave them leverage, should they need it. Oppenheimer worked so hard to be successful at this newest identity (creator of weapons of mass destruction for the U.S. government) that he overcame his past hang-up of leaving scientific investigations half-finished. He did have such doubts at times that he considered resigning, but he was talked out of the notion by his friends. He cut his hair, and got the job done.

The only trade-off was that in order to assume this new role, he had to prove his loyalties, and he did that by selling out his friends and colleagues. In many of the lengthy FBI files on his students and friends, one can find, very early in the file, an account of how they got on the radar of the anti-Communist agents of the United States government: they were alerted by J. Robert Oppenheimer himself. To be sure, Oppenheimer usually prefaced his denunciations by saying that these people were harmless, but he named names nonetheless.2

Ultimately it was this conflict of identities, I think, that snared Oppenheimer himself, in the end. His own well-documented downfall in the mid-1950s was in part the conflict of two of his identities. One of them was an eccentric, politically left-leaning intellectual who could be friends with anyone and dared to think and say whatever came to mind. The other was the head of a government weapons laboratory and later top-advisor in the area of nuclear arms. For a brief moment during the Manhattan Project, these two identities could overlap. By the 1950s, they could not — they were mutually exclusive, as distinct as a wave and a particle. Oppenheimer’s attempts to embody both of these at the same time, a sort of Complementarity-of-the-self, resulted in his selling out of the ideals of the former, and being rejected by the fears of the latter.

Notes
  1. These quotes are from Charles Thorpe’s Oppenheimer: The Tragic Intellect (Chicago: University of Chicago Press, 2006), 16. Thorpe’s book devotes much of its study of Oppenheimer to his quest for identity, and I owe many of my thoughts here to Thorpe's work. []
  2. To put this into perspective for my students, I tell them to replace the label "Communism" with "terrorist," and imagine how it would go over with the FBI today if you told them that a friend of yours was a little bit of a terrorist in the past, but had seen the error of their ways and was fine now. Would the FBI be comforted? Of course not. []
Visions

Trinity at 70: “Now we are all sons of bitches.”

Friday, July 17th, 2015

A quick dispatch from the road: I have been traveling this week, first to Washington, DC, and now in New Mexico, where I am posting this from. Highlights in Washington included giving a talk on nuclear history (what it was, why it was important) to a crowd of mostly-millennial, aspiring policy wonks at the State Department's 2015 "Generation Prague" conference. A few hours after that was completed, an article I wrote on the Trinity test went online on the New Yorker's "Elements" science blog: "The First Light of Trinity."

The First light of Trinity

Being able to write something for them has been a real capstone to the summer for me. It was a lot of work, in terms of the writing, the editing, and the fact-checking processes. But it is really a nice piece for it. I am incredibly grateful to the editor and fact-checker who worked with me on it, and gave me the opportunity to publish it. Something to check off the bucket list.

On the plane to New Mexico, I thought over what the 70th anniversary of Trinity really meant to me. I keep coming back to the post-detonation quote of Kenneth Bainbridge, the director of the Trinity project: "Now we are all sons of bitches." It is often put in contrast with J. Robert Oppenheimer's more grandiose, more cryptic, "Now I am become death, destroyer of worlds." Oppenheimer clearly didn't say this at the time of test explosion, and its meaning is often misunderstood. But Bainbridge's quote is somewhat cryptic and easy to misunderstand as well.

The badge photograph of Kenneth Bainbridge, director of the Trinity project. From a photo essay I wrote for the Bulletin of the Atomic Scientists two years ago.

The Los Alamos badge photograph of Kenneth Bainbridge, director of the Trinity project. From a photo essay I wrote for the Bulletin of the Atomic Scientists two years ago.

Bainbridge's quote first got a lot of exposure when it was published as part of Lansing Lamont's 1965 book, Day of Trinity, timed for the 20th anniversary of Trinity. Lamont interviewed many of the project participants who were still alive. The book contains many errors, which many of them lamented. (The best single book on Trinity, as an aside, is Ferenc Szasz's 1984, The Day the Sun Rose Twice, by a considerable margin.) A consequence of these errors is that a lot of the scientists interviewed wrote letters to each other to complain about them, which means they also clarified some quotes of theirs in the book. Bainbridge in particular has a number of letters related to mixed up quotes, mixed up content, and mixed up facts from the Lamont book in his personal papers kept at the Harvard University Archives, which I looked at several years back.

One of the people Bainbridge wrote to was Oppenheimer. He said he wanted to explain his "Now we are all sons of bitches" quote, to make sure Oppenheimer understood he was not trying to be offensive:

The reasons for my statement were complex but two predominated. I was saying in effect that we had all worked hard to complete a weapon which would shorten the war but posterity would not consider that phase of it and would judge the effort as the creation of an unspeakable weapon by unfeeling people. I was also saying that the weapon was terrible and those who contributed to its development must share in any condemnation of it. Those who object to the language certainly could not have lived at Trinity for any length of time.

Oppenheimer wrote back, in a letter dated 1966, just a year before his death, when he was pretty sick and in a lot of pain. It said:

When Lamont’s book on Trinity came, I first showed it to Kitty; and a moment later I heard her in the most unseemly laughter. She had found the preposterous piece about the ‘obscure lines from a sonnet of Baudelaire.’ But despite this, and all else that was wrong with it, the book was worth something to me because it recalled your words. I had not remembered them, but I did and do recall them. We do not have to explain them to anyone.1

I like Bainbridge's explanation, because it doubles back on itself: people will think we were unfeeling and terrible for making this weapon, which makes it sound like the people are not understanding, but, actually, yes, the weapon was terrible. I think you can get away with that kind of blanket condemnation if you're one of the people instrumental in its creation.

The original map of fallout from the Trinity test. There are several more "hot spots" to the South and West than are in the later more simplified drawings of it. Click to see the entire map at full resolution.

The original map of fallout from the Trinity test. There are several more "hot spots" to the South and West than are in the later more simplified drawings of it. Click the image to see the entire map at full resolution.

I have been thinking about how broadly one might want to expand the "we" in his quote. Just those at the Trinity test? Those scientists who made the bombs possible? All of the half-million involved in making the bomb, whether they knew their role or not? The United States government and population, from Roosevelt on down? The Germans, the fear of whom inspired its initial creation? The world as a whole in the 1940s? Humanity as a whole, ever?

Are we all sons of bitches, because we, as a species of sentient, intelligent, brilliant creatures have created such terrible means of doing violence to ourselves, to the extremes of potential extinction?

This is probably not what Bainbridge meant, but it is an interesting road to go down. It recalls the recent discussions about whether we live in a new era of time, the Anthropocene, and whether the Trinity test should be seen as the marker of its beginning,

Notes
  1. Regarding Baudelaire, supposedly, according to Lamont, this was going to be the code that Oppenheimer used to tell Kitty that the test was a success: "If the test succeeded, he would send her a brief message, an obscure line from a sonnet by Baudelaire: 'You can change the sheets.'" []
Meditations

What remains of the Manhattan Project

Friday, June 12th, 2015

What remains of the Manhattan Project? A lot of documents. Some people. A few places. And a handful of artifacts. Maybe less than one might expect, maybe more than one might expect — it was a very large, expensive undertaking, involving a lot of people, so there being some remnants is not surprising. Though given its size, and importance, perhaps one would expect more.

Some of the attending Manhattan Project veterans. Photo by Alex Levy of the Atomic Heritage Foundation.

Some of the attending Manhattan Project veterans. Photo by Alex Levy of the Atomic Heritage Foundation.

The symposium put on by the Atomic Heritage Foundation last week was really excellent — a really important event. The attendance was higher than I would have guessed. At least a dozen Manhattan Project veterans attended, and many children of Manhattan Project veterans (some of whom were born during the war) were there as well. There were also a lot of nuclear historians, scientists, and enthusiasts. I got to spend time talking with a lot of wonderful people who also cared a lot about, and took very seriously, the history of the atomic bomb. Among those who were there included Richard Rhodes (Pulitzer-winning author of The Making of the Atomic Bomb), Stan Norris (biographer of Leslie Groves), Kai Bird and Martin Sherwin (Pulitzer-winning authors of American Prometheus), John Coster-Mullen (major irritant to government censors and author of Atom Bombs), Avner Cohen (author of many books on Israel and the bomb), Ray Smith (the historian at Y-12), and Clay Perkins (physicist and nuclear "collector"), just to name a few. I saw some of my DC friends and former colleagues, and met a lot of nuclear history enthusiasts. All together, it looked like there was well over two hundred people between the two days of it.

There were several themes to the whole event. One was the creation of the Manhattan Project National Historic Park. There were representatives from both the National Park Service and the Department of Energy to talk about the process going forward, and there was also an excellent address by Senator Martin Heinrich of New Mexico.

Richard Rhodes gave the first address of Wednesday by talking about why we save authentic relics of the past. He took a tack I wouldn't have expected — he started off from the work of the philosopher John Searle on "social reality," the sorts of facts that exist only by mutual agreement. "When we lose parts of our physical past, we lose part of our social past as well." Our preference for the originals of things, the "authentic" objects, isn't just about sentiment, he argued — it is part of what defines us. (And if you don't believe physical things define you, try losing a wedding ring, or an irreplaceable album of old photographs.) Preserving public memories, spaces of our past, whether positive or negative, help us come to terms with who we are, and what we have done. And he made the point, quite effectively, that we do not just preserve the sites that glorify us — Ford's Theatre, Manzanar, and the Sand Creek massacre site are all National Historic Sites as well.

Battle deaths in state-based conflicts, 1946-2013, by Max Roser. This is what Rhodes had in mind regarding the decreased amount of deaths from war since World War II. (Note that if WWII was included in this, it would be even more stark: the rate of battle deaths per 100,000 of global population was 300 for the war as a whole.) There are a lot of ways to parse these numbers, as Roser's site makes clear (the raw numbers of wars has been increasing, some of this decline as a unit of population is due to the massive increase in global population), and there are multiple interpretations of the data (whether the bomb has anything to do with it is disputed by scholars), but it is still very interesting. Source: Max Roser, "War and Peace after 1945," OurWorldInData.org

Battle deaths in state-based conflicts, 1946-2013, by Max Roser. This is what Rhodes had in mind regarding the decreased amount of deaths from war since World War II. (Note that WWII's rate of battle deaths was around 300 per 100,000.) There are a lot of ways to parse these numbers, as Roser's site makes clear (the raw numbers of wars has been increasing, some of this decline as a unit of population is due to the massive increase in global population), and there are multiple interpretations of the data (whether the bomb has anything to do with it is disputed by scholars), but it is still very interesting. Source: Max Roser, "War and Peace after 1945," OurWorldInData.org.

Rhodes is no fan of nuclear weapons, and doesn't believe that the atomic bombs were what caused Japan to surrender in World War II.1 Yet, he argued that when J. Robert Oppenheimer told his recruits that these weapons might end all war, he might not have been wrong. Rhodes noted the marked decrease of deaths by war in the years that followed World War II, paired with the increased risk of a terrible nuclear holocaust. Nuclear weapons, he argued, were the first instance in which science revealed a natural limit to national sovereignty. In Rhodes framing of it, scientists found facts of the natural world which required new political interventions and methods to avoid certain types of war.

As a result, he said, these Manhattan Project sites were potentially among the most significant in the history of the world. It was an interesting way to start things off.

In an event where the participants are present, it is easy to fall into something that feels like just a celebration. And there were those, without a doubt, who felt positively about the Manhattan Project, that it was necessary to end the war, and all of that. There were also those who thought it wasn't necessary, too. I think my favorite comment came from James Forde, a Manhattan Project veteran who had been employed to clean tubes (later revealed to be gaseous diffusion barriers) near Columbia University during the war. He said that for awhile he felt bad about the atomic bombs, but then he looked more into all of the other damage that non-atomic weapons had done during the war. After that, he lost any enthusiasm for war of any kind. He got solid applause for that.

Age distribution at Los Alamos, May 1945. Top graph is total  civilian personnel, bottom is scientific employees only. Keep in mind this was 70 years ago, so anyone in their 20s then would be in their 90s now. Source: Manhattan District History, Book 8, Volume 2, Appendix, Graph 1.

Age distribution at Los Alamos, May 1945. Top graph is total civilian personnel, bottom is scientific employees only. Keep in mind this was 70 years ago, so anyone in their 20s then would be in their 90s now. Source: Manhattan District History, Book 8, Volume 2, Appendix, Graph 1.

The veterans who were there had all been extremely young at the time. This makes sense, of course — if it is the 70th anniversary, almost nobody older than their early twenties is going to still be around today. And at many of the sites, the youth were in abundance. As a result, most of them had fairly small roles, small jobs, though some of them had rubbed shoulders with the giants. There were a few remarkable anecdotes. Isabella Karle talked about working as a chemist at the Metallurgical Laboratory in Chicago, working on plutonium oxide produced at the Oak Ridge X-10 reactor. She had to move it between buildings, and since it was such a small amount, she just carried it in her pocket. Someone found out she was doing this, and required her, a young woman with pigtails, to be escorted between building by burly guards, attracting more attention than she would have otherwise. She also related a story about carrying a radiation counter around with her, and having it go off next to a Coca-Cola machine. Apparently a deliveryman had forgotten some tubing in his car, and borrow a contaminated tube from a Met Lab office, contaminating the machine with who knows what. Fortunately, she said, she had stumbled across this before anyone had used it.

Ben Bederson told some amazing stories about David Greenglass, who he had bunked with as a member of the Special Engineer Detachment. Greenglass, he said, was a "true believer" of a Communist. Bederson pointed out that he, like many New York Jews at the time, had been interested in Communism for awhile (he had grown up in a part of the Bronx that was considered a "Communist neighborhood") but that most had become disillusioned with it by the time the US was in the war. Greenglass never seemed to take the hint, though, and thought Bederson was a fellow traveler. It was an amusing contrast to people like Klaus Fuchs and Ted Hall, who hid their politics. Bederson eventually asked to be transferred to a different bunk. Later, Greenglass told the FBI he had wanted to try and recruit Bederson but his courier, Harry Gold, told him not to. The reason Greenglass thought Bederson would be a good recruit is because he gave money to the Roosevelt reelection campaign. "That shows you how smart David Greenglass was," Bederson remarked with sarcasm.

The arming plugs of the Little Boy bomb.

Holding the arming plugs of the Little Boy bomb.

Along with the veterans and the historians, there were some artifactual pieces of the past there. Clay Perkins had brought the arming switches of the Little Boy bomb, which he purchased over a decade ago. The green ("safe") one was kept plugged into the bomb until after takeoff. While in flight, the assistant weaponeer, Morris Jeppson, climbed into the unpressurized bomb bay of the Enola Gay and removed it. In its place, he put a red ("armed") plug, making the bomb electrically "live." (The red plug that Clay has is a spare, of course — the original was destroyed in the explosion over Hiroshima. Jeppson brought multiple spares with him since if he had dropped one during the operation, it would have aborted the mission.) Clay let me hold them, which was moving.

There was also a very surprising artifact brought by one of the veterans: a lucite hemisphere with pieces of Trinitite embedded in it. The Trinitite is not so rare, but the lucite was cast in the same mold that made the plutonium pits for the Trinity and Fat Man bombs, and included the small hold for the neutron initiator. This is an incredible thing to have kept (and I was also allowed to hold this, as well). I am sure its existence is the result of a violation of untold numbers of security rules. John Coster-Mullen, as I expected would, came up immediately afterwards to trace the dimensions. It looked how we all expected it to, but it still amazing to see something like this, knowing how secret it once was, and even now is supposed to be.2

I knew the plugs existed, I did not know the lucite existed. There is something profound about holding artifacts that had such strong connections to history. That historical empathy I spoke of in my most recent post has something to do with it — the brain suddenly makes this connection with this world that often seems so far away. But of course it really isn't that far away, and the world we have today is largely a product of it. But sometimes even historians need reminders.

Monthly costs of the Manhattan Project, 1943 through 1946. From the Manhattan District History, Volume 5, Appendix A.

Monthly costs of the Manhattan Project, 1943 through 1946. From the Manhattan District History, Volume 5, Appendix A.

My own contribution to the symposium was a talk about the Manhattan Project as a "Crucible for Innovation." I didn't choose the title (it is not really my style, even though I do teach at "The Innovation University"), but it was easy enough to roll with: how much innovation took place during the Manhattan Project, and why was it successful? I talked a bit about the secret Manhattan Project patent program as one way to measure its innovation. By the time the AEC took over, the Manhattan Project patent program approved 2,100 separate secret patent applications for filing, and had already filed 1,250 of them with the US Patent Office. As I noted in an article from a few years ago, that latter number represented 1.5% of all of the patent applications filed in 1946. The Manhattan Project was not just the building of a bomb, but the creation an entirely new industry from scratch.

Why did the Manhattan Project succeed? Well, I argued, it almost didn't — all you would need for it to have been a "failure" (in the sense of having not produced atomic bombs by the end of World War II) would to have been delayed by likely a few months. Which anyone who has ever tried to run even a small project knows is easy enough to do. I always try to emphasize this lack of an inevitability when I talk about the wartime effort, because it is easy to fall into the fallacy of knowing how the story ends and thus seeing it as predestined. The Manhattan Project was an anomaly: it was not innovation as usual, and it was not the natural or obvious path to take. Which is one reason why the US was the only country who actually went down that path with any seriousness during the war. The Manhattan Project still holds the world record for fastest tested or deliverable nuclear weapon after committing to build one: two and a half years.3

A preview of my forthcoming Manhattan Project sites map. Size is a subjective "prominence" rating given by me, the white dots show the actual location of the sites, and the color corresponds to whether it is government/military, educational institution, or private industry. An interactive version will be unveiled this summer, which will give more information about specific sites and permit zooming in, and etc. This only shows sites in the continental US and lower Canada — there are other non-US sites as well in the final version.

A preview of my forthcoming Manhattan Project sites map. Size is a subjective "prominence" rating given by me, the white dots show the actual location of the sites, and the color corresponds to whether it is government/military, educational institution, or private industry. An interactive version will be unveiled this summer, which will give more information about specific sites and permit zooming in, and etc. This only shows sites in the continental US and lower Canada — there are other non-US sites as well in the final version.

Lastly, I also emphasized the size of the project. I've talked on here about the immense cost of the work, and the greater-than-most-people-realize manpower requirements. But I also unveiled a screenshot of a work in progress. For a while now, I've been trying to make a database of every site where some sort of work on the Manhattan Project was done. I've been combing through the Manhattan District History, through archival files on contracts, and through databases of radioactive Superfund sites. I've been keeping a tally of any places listed as having some role in the final outcome, however minor. My current list is well over 200 separate sites. Some of these places were research institutions (about 40 are educational institutions of some nature), some were military or government institutions (some created from scratch, some pre-existing), and about half were private industry. Some places produced materials, some just produced paper. (The symposium took place in the Carnegie Institute of Science, which was where Vannevar Bush's Office of Scientific Research and Development headquarters were during the war, and I delighted in getting to point this out.) Not all sites were equally important, to be sure. But all played some role, even if most of those places probably did not actually know what their role was. The screenshot above is a preview of the map — it is still a work in progress, and the final version will be fully interactive, sortable into different categories, and so on.

It's a big list. Bigger than I thought when I started it. It just emphasizes again that the Manhattan Project was responsible for the birth of an industry, not just the bomb. Upon learning about the scale of the project in 1944, Niels Bohr told Edward Teller: "I told you it couldn't be done without turning the whole country into a factory. You have done just that." It was an apt observation.

Very little of this infrastructure remains. The Manhattan Project National Historic Park is an important step in the right direction for preservation of this history. There is a long road yet to go in terms of figuring out how to make it available to the public, and how to properly present the material. I remain optimistic that it will be an opportunity to talk about history in a productive way, and to build bridges between the ever-changing present and the ever-receding past.

Notes
  1. Rhodes is explicitly convinced by the Hasegawa thesis. In his words, though, "I find tragedy but no dishonor in having used atomic bombs to hasten the end of the war," whether they actually hastened that end or not. It is a nuanced point to make. []
  2. John says it is a bit smaller than the actual pit — the initiator would not have been able to fit in the hole given, and the mass would be off by a few percentage points. So either it was cast in an earlier or alternative pit model, or something happened to it in the meantime. My hypothesis is that it was cast in the actual pit mold, but that it shrunk in some way over time, either because it contracted while it cooled originally (the thermal contraction coefficient for acrylic is around 5X that of uranium, just as a point of comparison), or through some other warping mechanism over the last 70 years. []
  3. The decision to produce nuclear weapons was made in December 1942. The work prior to this was of an exploratory or pilot nature, not a production program. The "Gadget" was ready by mid-July 1945, the other bombs were ready by the end of the month. []