Posts Tagged ‘plutonium’

Visions

Visualizing fissile materials

Friday, November 14th, 2014

I’ve had some very favorable interactions with the people at the Program on Science and Global Security at Princeton University over the years, so I’m happy to announce that four of the faculty have collaborated on a book about the control of fissile material stockpiles. Unmaking the Bomb: A Fissile Material Approach to Nuclear Disarmament and Non-Proliferation, by Harold Feiveson, Alex Glaser, Zia Mian, and Frank von Hippel, was recently published by MIT Press. Glaser, who does some pretty far-out work at the Nuclear Futures Lab (among other things, he has been working on really unusual ways to verify weapons disarmament without giving away information about the bombs themselves — a really tricky intersection of policy, technical work, and secrecy), asked me if I would help them design the cover, knowing that I like to both dabble in graphic arts as well as bomb-related things. Here is what we came up with, in both its rendered and final form:

Unmaking the Bomb cover and render

The “exploded” bomb here is obvious a riff on the Fat Man bomb, simplified for aesthetic/functional purposes, and was created by me using the 3-D design program Blender. (The rest of the cover, i.e. the typography, was designed by the art people at MIT Press.) The idea behind the image was to highlight the fact that the fissile material, the nuclear core of the bomb, made up a very small piece of the overall contraption, but that its importance was absolutely paramount. This is why the non-nuclear parts of the bomb are rendered as a sort of grayish/white “putty,” and the core itself as a metallic black, levitating above.

The original idea, proposed by Glaser, was to do sort of a modern version of a drawing that appears in Chuck Hansen’s U.S. Nuclear Weapons: The Secret History (Aerofax: 1988). Hansen’s image is a thing of beauty and wonder:

1988 - Chuck Hansen - Fat Man

I first saw this diagram when I was an undergraduate at UC Berkeley, working on a project relating to nuclear weapons — one of my first exposures to this kind of stuff. I had checked out pretty much every book on the subject that was in the Berkeley library system, which meant I found lots of unexpected, un-searched-for things serendipitously amongst the stacks. (This is something that I think has been lost, or at least not replicated, with increased reliance on digital sources.) I saw this diagram and thought, “Wow! That’s a lot of information about an atomic bomb! I wonder how he got all of that, and how much of it is real and how much is made up?” I don’t want to say this diagram is what made me want to study nuclear secrecy — origins and interests are always more complicated than that, and a close friend of mine recently reminded me that even in elementary school I used to talk about how nuclear bombs were made, armed with the beautiful-but-highly-inaccurate drawings from Macaulay’s The Way Things Work), but it did play a role.

Eventually I did track down a lot of information about this particular diagram. I found Hansen’s own original sketch of it (in his papers at the National Security Archive) that he gave to the artist/draftsman who drew the piece, Mike Wagnon:

Chuck Hansen Fat Man sketch

I also tracked down Wagnon, some years back now. He told me how he drew it. The original drawing was made many times larger than it was going to be in the book — it was four feet long! After being finished, it was reduced down to the size on the page in the book, so that it just looked like it was packed with fine detail. He also confirmed for me what I had come to suspect, that the diagrams in Hansen’s book, as Wagnon put it to me in 2004, “advertise an accuracy they do not have.” A lot of it was just deduced and guessed, but when you draw it like an engineering diagram, people assuming you know what you’re doing.1

Looking at it now, I can see also sorts of really serious errors that show the limits of Hansen’s knowledge about Fat Man in 1988. An obvious one is that it is missing the aluminum pusher which sits in between the tamper and the high explosives. There are other issues relating to the most sensitive parts of the core, things that John Coster-Mullen has spent several decades now working out the details of. Hansen, in his later Swords of Armageddon, corrected many of these errors, but he never made a diagram that good again. As an aside, Wagnon’s version of Little Boy — which we also now know, because of Coster-Mullen, has many things wrong — was the source of the “blueprint” for the bomb in the 1989 film Fat Man and Little Boy:

At top, Wagnon's diagram of Little Boy from Hansen's 1988 U.S. Nuclear Weapons. At bottom, a screenshot from the 1989 film, Fat Man and Little Boy, shows Oppenheimer pondering essentially the same image.

At top, Wagnon’s diagram of Little Boy from Hansen’s 1988 U.S. Nuclear Weapons. At bottom, a screenshot from the 1989 film Fat Man and Little Boy shows Oppenheimer pondering essentially the same image.

Anyway, I am getting off the thread a bit. Unmaking the Bomb, aside from having an awesome cover, is about fissile materials: enriched uranium and separated plutonium, both of which can be readily used in the production of nuclear weapons. The authors outline a series of steps that could be taken to reduce the amount of fissile materials in the world, which they see as a bad thing both for non-proliferation (since a country with stockpiles of fissile materials can basically become a nuclear power in a matter of weeks), disarmament (since having lots of fissile materials means nuclear states could scale up their nuclear programs very quickly if they chose to), and anti-terrorism (the more fissile materials abound, the more opportunities for theft or diversion by terrorist groups).

The Princeton crew is also quite active in administering the International Panel on Fissile Materials, which produces regular reports on the quantities of fissile materials in the world. Numbers are, as always, hard for me to visualize, so I have been experimenting with ways of visualizing them effectively. This is a visualization I cooked up this week, and I think it is mostly effective at conveying the basic issues regarding fissile materials, which is that the stockpiles of them are extremely large with respect to the amounts necessary to make weapons:

world fissile material stockpiles

Click the image to enlarge it. The small blue-ish blocks represent the approximate volume of 50 kg of highly-enriched uranium (which is on order for what you’d need for a simple gun-type bomb, like Little Boy), and the small silver-ish blocks are the same for 5 kg of separated plutonium (on order for use in a first-generation implosion weapon). One can play with the numbers there a bit but the rough quantities work out the same. Each of the “big” stacks contain 1,000 smaller blocks. All references to “tons” are metric tons (1,000 kg). The “person” shown is “Susan” from Google SketchUp. The overall scene, however, is rendered in Blender, using volumes computed by WolframAlpha.

I made this visualization after a few in which I rendered the stockpiles as single cubes. The cubes were quite large but didn’t quite convey the sense of scale — it was too hard for my brain, anyway, to make sense of how little material you needed for a bomb and put that into conversation with the size of the cube. Rendering it in terms of bomb-sized materials does the trick a bit better, I think, and helps emphasize the overall political argument that the Unmaking the Bomb authors are trying to get across: you can make a lot of bombs with the materials that the world possesses. If you want the run-down on which countries have these materials (spoiler: it’s not just the ones with nuclear weapons), check out the IPFM’s most recent report, with graphs on pages 11 and 18.

To return to the original thread: the bomb model I used for the cover of Unmaking the Bomb is one I’ve been playing with for a while now. As one might imagine, when I was learning to use Blender, the first thing I thought to try and model was Fat Man and Little Boy, because they are subjects dear to my heart and they present interesting geometric challenges. They are not so free-form and difficult as rendering something organic (like a human being, which is hard), but they are also not simply combinations of Archimedean solids. One of my goals for this academic year is to develop a scaled, 3D-printed model of the Fat Man bomb, with all of the little internal pieces you’d expect, based on the work of John Coster-Mullen. I’ve never done 3D-printing before, but some of my new colleagues in the Visual Arts and Technology program here at the Stevens Institute of Technology are experienced in the genre, and have agreed to help me learn it. (To learn a new technology, one always needs a project, I find. And I find my projects always involve nuclear weapons.)

For a little preview of what the 3D model might end up looking like, I expanded upon the model I developed for the Unmaking the Bomb cover when I helped put together the Unmaking the Bomb website. Specifically, I put together a little Javascript application that I am calling The Visual Atomic Bomb, which lives on the Unmaking the Bomb website:

The Visual Atomic Bomb screenshot

I can’t guarantee it will work with old browsers (it requires a lot of Javascript and transparent PNGs), but please, give it a shot! By hovering your mouse over the various layer names, it will highlight them, and you can click the various buttons (“hide,” “show,” “open,” “close,” “collapse,” “expand,” and so on) to toggle how the various pieces are displayed. It is not truly 3D, as you will quickly see — it uses pre-rendered layers, because 3D is still a tricky thing to pull off in web browsers — but it is maybe the next best thing. It has more detail than the one on the cover of the book, but you can filter a lot of it on and off. Again, the point is to emphasize the centrality of the fissile material, but to also show all of the apparatus that is needed to make the thing actually explode.

I like to think that Chuck Hansen, were he alive today, would appreciate my attempt to take his original diagrammatic representation into a new era. And I like to think that this kind of visualization can help people, especially non-scientists (among which I count myself), wrap their heads around the tricky technical aspects of a controversial and problematic technology.

Notes
  1. I wrote a very, very, very long paper* in graduate school about the relationship between visual tropes and claims to power through secrecy with relation to the drawing of nuclear weapons. I have never quite edited it into a publishable shape and I fear that it would be very hard to do anything with given the fact that you really need to reproduce the diagrams to see the argument, and navigating through the copyright permissions would probably take a year in and of itself (academic presses are really averse to the idea of relying on “fair use“), and funds that nobody has offered up! But maybe someday I will find some way to use it other than as a source for anecdotes for the blog. *OK, I’ll own up to it: it was 93 pages long (but only 62 pages of text!) when I turned it in to the professor. I was told I should either turn it into a long article or a short book. []
Visions

The plutonium box

Friday, March 28th, 2014

I’ve found myself in a work crunch (somehow I’ve obligated myself to give three lectures in the next week and a half, on top of my current teaching schedule!), but I’m working on some interesting things in the near term. I have a review of Eric Schlosser’s Command and Control coming out in Physics Today pretty soon, and I’ll post some more thoughts on his book once that is available. And I have something exciting coming up for the 60th anniversary of Oppenheimer’s security hearing.

In the meantime, I wanted to share the results of one little investigation. I’ve posted a few times now (Posing with the plutoniumLittle boxes of doom, The Third Core’s Revenge) on the magnesium boxes that were used to transport the plutonium cores used for the Trinity test and the Fat Man bomb:

The magnesium cases for the world's first three plutonium cores. Left: Herb Lehr at Trinity base camp with the Gadget core. Center: Luis Alvarez at Tinian with the Fat Man core. Right: The third core's case at Los Alamos, 1946.

The magnesium cases for the world’s first three plutonium cores. Left: Herb Lehr at Trinity base camp with the Gadget core. Center: Luis Alvarez at Tinian with the Fat Man core. Right: The third core’s case at Los Alamos, 1946.

Just to recap, they were a design invented by Philip Morrison (the Powers of Ten guy, among other things), made out of magnesium with rubber bumpers made of test tube stoppers. They could hold the plutonium core pieces (two in the case of the Trinity Gadget, three in the case of Fat Man), as well as neutron initiators. Magnesium was used because it was light, dissipated heat, and did not reflect neutrons (and so wouldn’t create criticality issues). All of this information is taken from John Coster-Mullen’s Atom Bombs, an essential book if you care about these kinds of details.

But all of the photographs of the box I had seen, like those above, were in black and white. Not a big deal, right? But I find the relative lack of color photography from the 1940s one of those things that makes it hard to relate to the past. When all of Oppenheimer’s contemporaries talked about his icy blue eyes, it makes you want to see them as they saw them, doesn’t it? Maybe it’s just me.

The only place where I almost saw a color photo of the box is in a photo that the late Harold Agnew had taken of himself on Tinian. It’s one of a large series of posing-with-plutonium photos that were taken on the island of Tinian sometime before the Nagasaki raid. Only this one is in color! Except… well, I’ll let the photo speak for itself:

Harold Agnew with plutonium core redacted

Yeah. Not super helpful. This was scanned from Rachel Fermi and Esther Samra’s wonderful Picturing the Bomb book. They asked Agnew what had happened, and he told them that:

I was in Chicago after the war in 1946. The FBI came and said they believed I had some secret pictures. They went through my pictures and found nothing. Then like a fool I said, “Maybe this one is secret.” They wanted to know what that thing was. I told them and they said that it must be secret and wanted the picture. I wanted the picture so they agreed if I scratched out the “thing” I could keep the slide.

Thwarted by nuclear secrecy, once again! You can try to look extra close at the scratches and maybe just make out the color of the “thing” but it’s a tough thing to manage.

Ah, but there is a resolution to this question. Scott Carson, a retired engineer who posts interesting nuclear things onto his Twitter account, recently posted another  photo of the box — in color and unredacted! His source was a Los Alamos newsletter from a few years back. It is of Luis Alvarez, another member of the Tinian team, in the same exact pose and location as the redacted Agnew photograph… but this time, un-redacted! And the color of the box was…

Luis Alvarez with the Fat Man core, Tinian, 1945.

…yellowNot what I was expecting.

Why yellow? My guess: it might be the same yellow paint used on the Fat Man bomb. Fat Man was painted “a mustard yellow rust-preventing zinc-chromate primer” (to quote from Coster-Mullen’s book) that made them easier to spot while doing drop tests of the casings.

The box for the Trinity core doesn’t look painted yellow to me — it looks more like raw magnesium. Maybe they decided that the tropical atmosphere of Tinian, with its high humidity, required painting the box to keep it from oxidizing. Maybe they just thought a little color would spruce up the place a little bit. I don’t know.

Does it matter? In some sense this is pure trivia. If the box was blue, green, or dull metallic, history wouldn’t be changed much at all. But I find these little excursions a nice place to meditate on the fact that the past is a hard thing to know intimately. We can’t see events exactly as they were seen by those who lived them. Literally and figuratively. The difficulty of finding out even what color something was is one trivial indication of this. And the secrecy doesn’t help with that very much.

Visions

Little boxes of doom

Wednesday, October 23rd, 2013

I was at a (very interesting) conference last week and didn’t get a chance to do a regular blog post. I’ll have a real post on Friday, as usual, but I thought in the meantime people might enjoy this little passage I came across in William L. Laurence’s Dawn Over Zero: The Story of the Atomic Bomb (1946):

The secrecy frequently led to tragicomic situations. A trusted courier was dispatched by automobile to deliver a small box of material, the nature of which he was not told, to a certain locality several hundred miles away. He was cautioned that at the first sign of any unusual behavior inside the box he was to abandon the automobile in a hurry and run as far away from it as his legs would carry him.

The magnesium box used for transporting the plutonium core to the Trinity site. Via Los Alamos.

The magnesium box used for transporting the plutonium core to the Trinity site. Via Los Alamos.

Our courier asked no questions and went his way, taking frequent glances at the strange box behind him. Things went well until he came to the middle of a long bridge. Suddenly, from directly behind him, came a terrific boom. Out of the car he dashed like one possessed, running faster than he had ever run in his life. Out of breath and exhausted, he stopped to examine himself to make sure that he was still in one piece. Meantime a long line of traffic had gathered behind his driverless car and the air was filled with the loud tooting of impatient motorists.

Slowly he made his way back to his automobile and found to his amazement that it was still all there. Peering cautiously inside, he was even more amazed to find his precious box on the same spot as before. He was used to strange things, this courier, so he took his place at the wheel and was about the continue on his mission when once again he heard a loud boom directly behind him.

Once again he made a dash for his life, heedless of the angry horns that by this time were sounding from a line more than a mile long. Still exhausted from his previous mad dash, he nevertheless managed to put a considerable distance between himself and his mysterious box.

Eventually he made his way back, to find his car and his box in the same spot where he had left them. This time, however, he found an irate traffic officer waiting for him. Beyond showing the officer by his credentials that he was a Government employee, there was nothing he could tell him. It turned out that there had been blasting going on underneath the bridge.

Who knows how much of the story is true and how much of it is embellished by either Laurence or the original teller, but I thought it was highly amusing. One suspects, by the description of the box, the particular safety concerns, and the distance, that they are talking about the movement of the Trinity core from Los Alamos to the Trinity site.

John Coster-Mullen, in his fantastically interesting Atom Bombs (a newly-updated copy of which he recently sent me), has a somewhat related anecdote from the plane that transported the Fat Man core to Tinian in late July 1945: “During the flight to Tinian, they ran into a storm. [Raemer] Schreiber was sitting in the co-pilot’s seat and one of the guards came forward and tapped him nervously on the shoulder. ‘Sir, your box is bouncing around back there and we’re scared to touch it.’ Schreiber went back, corralled it, got a piece of rope and tied it to one of the legs of the cots.”

Redactions

The Third Core’s Revenge

Friday, August 16th, 2013

By the end of August 1945, there had been a total of three plutonium cores created in the entire world. Everyone knows about the first two. The first was put into the Gadget and detonated at Trinity in July 1945. The second was put into the Fat Man and detonated over Nagasaki in August 1945. The third, however, has been largely overlooked. The third core was the one that was destined to be the Third Shot dropped on Japan, had there been a Third Shot. Instead, it has a different story — but it was still not a peaceful one.1

The magnesium cases for the world's first three plutonium cores. Left: Herb Lehr at Trinity base camp with the Gadget core. Center: Luis Alvarez at Tinian with the Fat Man core. Right: The third core's case at Los Alamos, 1946.

The magnesium cases for the world’s first three plutonium cores. Left: Herb Lehr at Trinity base camp with the Gadget core, July 1945. Center: Luis Alvarez at Tinian with the Fat Man core, August 1945. Right: The third core’s case at Los Alamos, early 1946.

One of the questions I got from people regarding the “Why Nagasaki?” post I wrote last week was “When would the Third Shot really have been ready?” The reason for the question is that since the Third Shot was unlikely to have been ready by the time Hirohito announced Japan’s acquiescence to the American surrender demands (August 15), that satisfies the question of why another one wasn’t used. In a very practical sense, it does, but it ignores the fact that Truman actually put a “stop” on all further atomic bombings on August 10 — when the effect (if any) of the bombs on Japan’s high command was yet unknown. (He did not, it is worth noting, put a stop on firebombing: huge B-29 raids continued up until the surrender announcement.)

But still, it’s an interesting question to consider. There are two components to it: when did they think the third core would be ready, and when was it actually ready? On the first question, we know that on August 10, General Groves wrote to General Marshall that:

The next bomb of the implosion type had been scheduled to be ready for delivery on the target on the first good weather after 24 August 1945 . We have gained 4 days in manufacture and expect to ship from New Mexico on 12 or 13 August the final components. Providing there are no unforeseen difficulties in manufacture, in transportation to the theatre or after arrival in the theatre, the bomb should be ready for delivery on the first suitable weather after 17 or 18 August.2

1945-Groves-to-Marshall

It was on this document that Marshall scrawled, “It is not to be released on Japan without express authority from the President” — the Truman “stop” order. But we also know, from the Seeman-Hull document I discussed in an earlier post, that Marshall was still interested in the atomic production rate on Monday, August 13, 1945. At that time, Seeman claimed that:

Seeman: There’s one ready to be shipped now — waiting on order right now. […] The whole program is phased according to the best production. There is one of them that is ready to be shipped right now. The order was given Thursday [August 9?] and it should be ready the 19th.

Hull: If the order is given now, when can it be ready?

Seeman: Thursday [August 16] would be its readiness; the 19th it would be dropped.

Hull: In other words, three or four day advance notice before it can be shipped, and six days after that when it can be dropped.

So that’s a pretty interesting conversation — it tells us that the core was in some kind of almost-finished state by August 13. In a 2012 interview, physicist Lawrence Litz told Alexandra Levy of the Atomic Heritage Foundation that:

Levy: What was—how did—do you remember working on casting the plutonium for the third bomb?

Litz: The particular day that remembers—that remains in my memory was the day that we cast the plutonium for the third bomb because we weren’t sure that the Japanese would surrender even after the second bomb was dropped. We had to cast the atmospheres for the third, and because time was short we had to cast the two hemispheres at the same time. But it was dangerous to cast them in the same laboratory at the same time so we set up two adjacent laboratories with the high vacuum apparatus and the—so we could cast one hemisphere in each one of the two labs.

Levy: How long did that take to cast?

Litz: About twenty-four hours and we had to work straight through.

Which gives some indication of the tenor of the day, and the fact that Truman’s “stop” order didn’t mean that they weren’t expecting to potentially keep atomic bombing. (As does the Seeman-Hull conversation.)

How much plutonium was on hand in August 1945? I’ve been hunting around for anything that would give me some hard numbers on this, and finally, basically when I’d given up on the effort, I was surprised to stumbled across a document that did:

1945-08-30 - Los Alamos plutonium inventory

“49 Interim Processing Program No. 24,” dated August 30, 1945, indicates that by that date that Los Alamos had, by their assessment, received 26.136 kg of plutonium from Hanford.3  Figuring out what was done with all of that requires a little decoding of the terminology. 12.292 kg of the material is listed as having been transferred to the US Army with the notation “HS-1, 2, 3, 4; R-1″ after it. I haven’t seen this notation before, but I think it’s almost certain that “HS” means “hemisphere,” i.e. half of a sphere of plutonium. So two full spheres worth were transferred to the Army and were at that time “non-usable,” along with “R-1.” R-1 is almost certainly an “anti-jet” ring developed for use in the Fat Man core (and not present in Trinity’s core).4 So HS-1+HS-2 were the Trinity core components, and HS-3+HS-4+R-1 was the Fat Man core. The first two cores were “non-usable” because they had been detonated.

So we can see from the document that HS-5, HS-6, and R-2 had already been cast and were in the hands of Quality Control at the lab (QC). HS-7 and R-3 had been already cast by then, but still needed hot pressing and nickel coating. HS-8 was scheduled to be pressed on August 31, and finished by September 5. Which is the finest-grain look at the early nuclear production schedule that I’ve ever seen. (And as you can tell I’m quite proud of myself for finding it and deciphering it!)

But the story of the third core doesn’t end there. 

The core was cast sometime around August 13th, but still likely needed to be pressed and coated, ergo the need to take until August 16th to finalize. By August 15th, it became clear that it wasn’t going to be needed in the war. So it was kept at Los Alamos.

A mockup of the third core's experimental setup, August 21, 1945. (Source: Los Alamos)

A mockup of the third core’s experimental setup, August 21, 1945. (Source: Los Alamos)

What it was doing between August 15th and August 21st, I don’t know. But I do know that on August 21st it was being used for critical mass experiments — “tickling the dragon’s tail.” The experiments in question involved surrounding a full 6.2 kg core with tungsten carbide, getting information about the effect that different tamper arrangements had on criticality. (The tamper reflects neutrons back into the core, thus increasing the overall neutron economy and thus lowering the effective critical mass.)

The experimenter in question was 24-year-old physicist Harry Daghlian, Jr. To quote from a report on the experiment:

[Daghlian] was carrying one brick [of tungsten carbide] in his left hand over the assembly, to place it in the center of the fifth layer. While he had this brick suspended over the assembly, he noticed (from the instruments) that the addition of this brick would have made the assembly supercritical if placed on top of the assembly. Having realized this, he was withdrawing his left hand and the brick from over the assembly and while doing so the brick slipped out of his hand and fell immediately onto the center of the assembly. Knowing that this brick would made the assembly dangerous, he instinctively and immediately pushed this brick off the assembly with his right hand. While doing this, he stated that he felt a tingling sensation in his right hand and at the same time noticed a blue glow surrounding the assembly, the depth of the blue glow being estimated to be about two inches.5

Daghlian was estimated to have received a 510 rem dose of ionizing radiation — a usually lethal dose. He died after an agonizing month. This, incidentally, appears to have been why at the time of the August 30 audit, the core was in Quality Control: they were checking to make sure it had not undergone any “dimensional changes” as a result.

One might think that someone involved with the investigation of the Daghlian accident would be especially cautious around using such a core in further critical mass experiments, even if only for superstitious reasons.

Re-creation of Slotin's fatal experiment with the third core. (Source: Los Alamos)

Re-creation of Slotin’s fatal experiment with the third core. (Source: Los Alamos)

But exactly 9 months later, one of the co-authors of the above-cited report, Louis Slotin, would himself receive a lethal radiation dose from the exact same core in the process of yet another (different) critical mass experiment. Slotin knew the experiment in question was dangerous, and had been told by Enrico Fermi that he would be “dead within a year” if he continued to work with such bravado. Like Daghlian, his hand faltered at a literally critical juncture: he was holding a neutron reflector above the core with a screw driver when his fatal slip occurred, lowering the reflector just a fraction of an inch, releasing a stream of neutrons and the characteristic blue glow. Slotin died 9 days later.

The third core, by now nicknamed the “demon core” for having taken two lives, would not go out with a whimper. By some accounts, it found its final disposition in the first postwar nuclear test, shot “Able” of Operation Crossroads, on July 1, 1946,  just under a year after it had been first cast, in that all-night session, in the closing days of World War II. Encased in a “Fat Man” assembly with “GILDA” stenciled on its hull, it was finally dropped from a B-29, as it was originally intended to be, and it detonated over a fleet of empty ships in the Bikini atoll, with a yield of 21 kilotons. Alas, the journalists who saw it, with perhaps higher expectations for their first atomic bomb test, incorrectly dubbed it a flop.

The final use of the third core: the Crossroads "Able" shot, July 1, 1946.

The final use of the third core: the Crossroads “Able” shot, July 1, 1946.

That a single plutonium core could go through so much may seem remarkable. But it is a reflection of a time when such cores were extremely rare commodities. And so a single core could simultaneously be the one originally destined for the “third shot,” and also be the subject of two fatal criticality accidents, and also still be the first core consumed by postwar nuclear testing. It is a potent reminder of how paltry the American nuclear arsenal once was — when there were less than a dozen pieces of cores, much less cores themselves.

Notes
  1. Since a few people have gotten confused, I think I should say somewhere explicitly: the Hiroshima bomb, Little Boy, used a 64 kg highly-enriched uranium core. I’m only talking about plutonium here, in part because it was only plutonium cores that were being manufactured at this point, since the Little Boy design was considered more or less instantly obsolete. []
  2. Leslie R. Groves to George C. Marshall (10 August 1945), copy in the Nuclear Testing Archive, document NV0137881. []
  3. C.S. Garner, “49 Interim Processing Program No. 24,” (30 August 1945), DOE OpenNet Document ALLAOSTI126018. It is interesting, as well, that the Hanford (W) and Los Alamos (Y) assays were off by 1.376 kg, which is quite a lot in this context (22% of a bomb core, or 44% of a single hemisphere). There are indications in the files that they did quite a lot of sniffing around trying to figure out what each site was doing that led to these different assessments. The problem of Material Unaccounted For never really goes away, but it’s interesting that it shows up this early in the game. []
  4. I discussed the fact that the Trinity and Nagasaki cores were slightly different in a very old blog post; Trinity was just two hemispheres, whereas Fat Man also included the ring. []
  5. Paul Aebersold, Louis Hempelmann, and Louis Slotin, “Report on Accident of August 21, 1945 at Omega Site,” (26 August 1945), LAMD-120, copy reprinted in John Coster-Mullen, Atom bombs: The Top Secret inside story of Little Boy and Fat Man, rev. 2007. []
Meditations

Plutonium Lives and Half-lives

Friday, October 12th, 2012

Plutonium is a fascinating element. It’s named after the Roman God of Death (by way of being named after a former planet). Its atomic abbreviation, “Pu,” was chosen to sound like “Peee-yooou,” as in, something smells bad. It doesn’t exist in nature (at least not in more than trace quantities) — all plutonium of significance currently in the world was created by human beings. And of course it is fissile, and so can be used as fuel for nuclear bombs or nuclear reactors.

It’s also pyrophoric, which is a fancy term to say it combusts on contact with air. It’s chemically unusual — it’s right on the juncture point between two different groups of elements, so it has six allotropic phases and four oxidation states. In non-sciency terms, this means that its volume and density changes radically as a factor of its temperature. This made it a tetchy addition to the wartime bomb project, where things like volume and density made a big difference when trying to use it inside of an exploding nuclear bomb. (They found that a plutonium-gallium alloy was a bit more stable.)

And hey, at least one form of it, Plutonium-238, actually glows in the dark! It does so because it’s radioactive enough to be scalding hot, which is why it is useful as a power source for things like the Curiosity rover currently tooling around Mars.1

A glowing pellet of plutonium-238. And you thought The Simpsons wasn’t factually accurate.

If you’re something of a science geek, all of the above is, again, terribly fascinating. And I think it’s been established on here that I am, among other things, something of a science geek. There’s something alluring to folks like me about the idea of a chemically irritable, glowing man-made element named after the god of the dead that catches fire on its own and can be used to blow up entire cities. It sounds like something out of the worst types of science fiction, where authors just make up goofy substances to advance the plot.

Oh — I left out one key thing. It’s also toxic. Exactly how toxic is up for some debate — some informed sources say it is intensely, acutely toxic in very small inhaled amounts, others suggest its toxicity is a lot lower than that, making it more of a long-term threat — but either way, it’s not good for you if it gets into your body. 

Because of its connections to nuclear weapons, the United States produced some 100 metric tons of plutonium over the course of the Cold War. And it was produced and operated on in big factories, under lots of secrecy, surrounded by lots of regular people. And there’s the rub: part of me wants to geek out on how awesome plutonium is, and part of me keeps saying, hey, idiot, don’t forget how it affects individual human beings — men, women, children, families. People who have been inadvertently exposed to it, for example. People who went out of their way to live next to a plutonium fabrication facility, for example, because it promised them good jobs and work that helped their country. 

Map adapted from P.W. Krey and E.P. Hardy, “Plutonium in Soil around the Rocky Flats Plant,” HASL-235 (1970). This adaptation is taken from here.

I find nuclear history fascinating, from an intellectual point of view, and all of its little detailed ins and outs continually draw me in. But I endeavor to not be too fascinated by it — so attracted to the “technically sweet” bits that I lose sight of the big picture, and lose any empathy I might have with those who lived it. It’s all too common that in our rush for objectivity, especially about Big Male Military Subjects, that we take solace in the cold, hard facts, and disregard accounts that come from other perspectives.

I was reminded of this last week, when I went to see a talk at the National Museum of American History. The speaker was Kristen Iversen, talking about her new book, Full Body Burden: Growing Up in the Nuclear Shadow of Rocky Flats (which recently got a very favorable review from the New York Times). Iversen directs the Creative Writing program at the University of Memphis, and gave a good, heartfelt presentation to a packed room. Interestingly, the room was packed with mostly women, which is highly unusual for nuclear-themed talks, in my experience.

The book is part memoir, part investigative account. Iversen’s family moved to Arvada, Colorado, in the late-1950s. Arvada, a small town north of Denver, was next to Rocky Flats, a plutonium fabrication facility owned by the U.S. Atomic Energy Commission and operated initially by Dow Chemical.

Hanford would breed the plutonium in their mammoth nuclear reactors, and the metal would be shipped to Rocky Flats, where workers would shape it into forms useful inside nuclear weapons — the “pits.” The pits would then be shipped to the Pantex Plant in Texas for final assembly into bombs.

In theory, all of this would be well-contained within glove boxes and filters and sensibly designed waste systems. In practice, plutonium is a messy substance, and for a variety of reasons, a lot of corners were cut. The result is that map up above — a fairly large plume of plutonium was deposited in the soil around the plant and the surrounding communities.

An employee at Rocky Flats holds a plutonium “button” inside of a glove box, 1973.

From Iversen’s presentation, it sounded like a pretty interesting read. It’s historical, it’s journalistic, and yet it’s read through the lens of the personal. This sort of thing is necessary — we need to keep in mind, when talking about grand strategy and big motivations, that there are all sorts of regular people caught up in this as well. That most of the world is not comprised of heads of state, or even heads of agencies.

The residents of the towns around Rocky Flats were ill served by nuclear secrecy. They weren’t told, for example, that a fire in 1957 spread a wide plume of radioactivity across the area. Or when it happened again in 1969. They weren’t given information on the sorts of diseases that are associated with coming into contact with heavy actinides. They were assured, again and again, that everything was under control.

And from Iversen’s account, most of them believed it. Why wouldn’t they? They had skin in that game — the livelihood of their town depended on it, and, as we’ve all seen again and again, human beings, for all of their famed skittishness, are quick to rationalize the big, unwieldly long-term risks that they live next door to. This is something that people in the field of risk communication have known for a long time: we learn to ignore risks that we live next to, especially when we have a personal incentive to do so. (In fact, many of those cut corners mentioned above were done by the employees themselves, because the profit incentive was on speed, not safety. This is unfortunately an all-too-common story with toxic industries.)

An “Infinity Room” at Rocky Flats — a room so contaminated by radiation that it was never to be occupied by unshielded humans again. From the DOE Digital Archive.

To give you an idea of how not under control things were, though, Iversen tells a gripping account of when the FBI raided Rocky Flats in 1989. Alerted by whistleblowers for egregious safety violations inside the plant, the FBI eventually concluded that the only way to find out what was being done inside Rocky Flats was to bust on inside. But you can’t just walk into a plutonium fabrication facility, even if you’re the FBI. So they came up with what was really an ingenious plan. The FBI told the Department of Energy officials at Rocky Flats that they had to brief all of them on a potential eco-terrorist threat — they said that Earth First was planning to attack the plant. Once the FBI had all of the senior management rounded up in a room for the briefing, they served them with search warrants, and along with the EPA, they invaded the facility and occupied it.

The DOE and the contractor (by then Rockwell) got off the hook pretty much scott free, despite plenty of evidence that they had in fact been complicit in plenty of environmental crimes — which are, as well, crimes against the community at large. Such is how things go, sometimes, when you’re talking about plants that do secret things for the nuclear weapons industry.

I’m looking forward to reading Iversen’s full book. Because I work primarily with records of the state, I always risk seeing like a state — or at least seeing history like one. Stories of the personal effects, ironically, can help one keep some distance from that standpoint. This isn’t to say that the personal, individual perspective is everything — the “big picture” still undoubtedly matters — but I think a serious historian excludes it at their peril.


One little announcement: In today’s issue of Science, I have a review published of Michael Gordin’s The Pseudoscience Wars: Immanuel Velikovksy and the Birth of the Modern Fringe (University of Chicago Press, 2012). I’ve reviewed a number of Michael’s books over the years, but I think this one is his best-written one yet, and I really enjoyed it a lot. It’s not very nuclear, but it does have an important Cold War theme. Check it out.

Notes
  1. A correspondent also notes that this heating is from alpha emission, which also tends to break the Pu-238 into small particles — meaning they can contaminate a volume rather quickly. Charming. []