Posts Tagged ‘Soviet Union’

Visions

Dogs in space

Friday, June 26th, 2015

Confession: I once told my students something I knew wasn’t true. It was during a lecture on the Space Race, on Sputnik 2, which carried the dog Laika into space in November 1957. I told them about how the Soviets initially said she had lived a week before expiring (it was always intended to be a one-way trip), but that after the USSR had collapsed the Russians admitted that she had died almost immediately because their cooling systems had failed. All true so far.

But then one bright, sensitive sophomore, with a sheen on her eyes and a tremble in her voice, asked, “But did they at least learn something from her death?” And I said, “oh, um, well, uh… yes, yes — they learned a lot.”

Which I knew was false — they learned almost nothing. But what can you do, confronted with someone who is taking in the full reality of the fact that the Soviets sent a dog in space with the full knowledge it would die? It’s a heavy thing to admit that Laika gave her life in vain. (In subsequent classes, whenever I bring up Sputnik, I always preempt this situation by telling the above story, which relieves a little of the pressure.)

A Soviet matchbox with a heroic Laika, the first dog in space. Caption: "First satellite passenger — the dog, Laika." Want it on a shirt, or a really wonderful mug?

A Soviet matchbox with a heroic Laika, the first dog in space. Caption: “First satellite passenger — the dog, Laika.” Want it on a shirt, or a really wonderful mug?

I’m a dog person. I’ve had cats, but really, it’s dogs for me. I just believe that they connect with people on a deeper level than really any other animal. They’ve been bred to do just that, of course, and for a long time. There is evidence of human-dog cohabitation going back tens of thousands of years. (Cats are a lot more recently domesticated… and it shows.) There are many theories about the co-evolution of humans and dogs, and it has been said (in a generalization whose broadness I wince at, but whose message I endorse) that there have been many great civilizations without the wheel, but no great civilizations without the dog.

So I’ve always been kind of attracted to the idea of dogs in space. The “Mutniks,” as they were dubbed by punny American wags, were a key, distinguishing factor about the Soviet space program. And, Laika aside, a lot of them went up and came back down again, providing actually useful information about how organisms make do while in space, and allowing us to have more than just relentlessly sad stories about them. The kitsch factor is high, of course.

A friend of mine gave me a wonderfully quirky and beautiful little book last holiday season, Soviet Space Dogs, written by Olesya Turkina, published by FUEL Design and Publishing. According to its Amazon.com page, the idea for the book was hatched up by a co-founder of the press, who was apparently an aficionado of Mutnikiana (yes, I just invented that word). He collected a huge mass of odd Soviet (and some non-Soviet) pop culture references to the Soviet space dogs, and they commissioned Turkina, a Senior Research Fellow at the State Russian Museum, to write the text to accompany it. We had this book on our coffee table for several months before I decided to give it a spin, and I really enjoyed it — it’s much more than a lot of pretty pictures, though it is that, in spades, too. The narrative doesn’t completely cohere towards the end, and there are aspects of it that have a “translated from Russian” feel (and it was translated), but if you overlook those, it is both a beautiful and insightful book.

Soviet Space Dogs cover

First off, let’s start with the easy question: Why dogs? The American program primarily used apes and monkeys, as they were far better proxies for human physiology than even other mammals. Why didn’t the Soviets? According to one participant in the program, one of the leading scientists had looked into using monkeys, talking with a circus trainer, and found out that monkeys were terribly finicky: the training regimes were harder, they were prone to diseases, they were just harder in general to care for than dogs. “The Americans are welcome to their flying monkeys,” he supposedly said, “we’re more partial to dogs.” And, indeed, when they did use some monkeys later, they found that they were tough — one of them managed to worm his way out of his restraints and disable his telemetric equipment while in flight.

The Soviet dogs were all Moscow strays, picked for their size and their hardiness. The Soviet scientists reasoned that a dog that could survive on the streets was probably inherently tougher than purebred dogs that had only lived a domesticated life. (As the owner of a mutty little rescue dog, I of course am prone to see this as a logical conclusion.)

The Soviet dog program was more extensive than I had realized. Laika was the first in orbit, but she was not the first Soviet dog to be put onto a rocket. Turkina counts at least 29 dogs prior to Laika who were attached to R-1 and R-2 rockets (both direct descendants of the German V-2 rockets), sent up on flights hundreds of miles above the surface of the Earth starting in 1951. An appendix at the back of the book lists some of these dogs and their flights.

Oleg Gazenko, chief of the dog medical program, with Belka (right) and Strelka (left) at a press conference in 1960. Gazenko called this "the proudest moment of his life."

Oleg Gazenko, chief of the dog medical program, with Belka (right) and Strelka (left) at a TASS press conference in 1960. Gazenko called this “the proudest moment of his life.”

Many of them died. Turkina talks of the sorrow and guilt of their handlers, who (naturally) developed close bonds with the animals, and felt personally responsible when something went wrong. Some of the surviving dogs got to live with these handlers when they retired from space service. But when the surviving dogs eventually expired, they would sometimes end up stuffed and in a museum.

I had thought I had heard everything there was to hear about Laika, but I was surprised by how much I learned. Laika wasn’t really meant to be the first dog in space — she was the understudy of another dog who had gotten pregnant just before. Laika’s death was a direct result of political pressures to accelerate the launch before they were ready, in an effort to “Sputnik” the United States once again. The head of the dog medical program, when revealing Laika’s true fate in 2002, remarked that, “Working with animals is a source of suffering to all of us. We treat them like babies who cannot speak. The more time passes, the more I’m sorry about it. We shouldn’t have done it. We did not learn enough from the mission to justify the death of the dog.”

The Soviets did not initially focus on the identity of Laika. Laika was just listed as an experimental animal in the Sputnik 2 satellite. Rather, it was the Western press, specifically American and British journalists, that got interested in the identity, and fate, of the dog. The Soviet officials appear to have been caught by surprise; I can’t help but wonder if they’d had a little less secrecy, and maybe ran this by a few Americans, they’d have realized that of course the American public and press would end up focusing on the dog. It was only after discussion began in the West that Soviet press releases about Laika came out, giving her a name, a story, a narrative. And a fate: they talked about her as a martyr to science, who would be kept alive for a week before being painlessly euthanized.

Staged photo of Belka in a space suit.

Staged photo of Belka in a space suit.

In reality, Laika was already dead. They had, too late, realized that their cooling mechanisms were inadequate and she quickly, painfully expired. The fact that Laika was never meant to come back, Turkina argues, shaped the narrative: Laika had to be turned into a saintly hero, a noble and necessary sacrifice. One sees this very clearly in most of the Soviet depictions of Laika — proud, facing the stars, serious.

The next dogs, Belka and Strelka, came back down again. Belka was in fact an experienced veteran of other rocket flights. But it was Strelka’s first mission. Once again, Belka and Strelka were not meant to be the dogs for that mission: an earlier version of the rocket, kept secret at the time, exploded during launch a few weeks earlier, killing the dogs Lisichka and Chaika. These two dogs were apparently beloved by their handlers, and this was a tough blow. The secrecy of the program, of course, pervades the entire story of the Soviet side of the Space Race, and serves as a marked contrast with the much more public-facing US program (the consequences of which are explored in The Right Stuff, among other places).

When Belka and Strelka came back safely, Turkina argues, they became the first real Soviet “pop stars.” Soviet socialism didn’t really allow valorization of individual people other than Stakhanovite-style exhortations. The achievements of one were the achievements of all, which doesn’t really lend itself to pop culture. But dogs were fair game, which is one reason there is so much Soviet-era Mutnikiana to begin with: you could put Laika, Belka, and Strelka on cigarettes, matches, tea pots, commemorative plates, and so on, and nobody would complain. Plus, Belka and Strelka were cute. They could be trotted out at press conferences, on talk shows, and were the subjects of a million adorable pictures and drawings. When Strelka had puppies, they were cheered as evidence that biological reproduction could survive the rigors of space, and were both shown off and given as prized gifts to Soviet officials. So it’s not just that the Soviet space dogs are cool or cute — they’re also responsible for the development of a “safe” popular culture in a repressive society that didn’t really allow for accessible human heroes. Turkina also argues that Belka and Strelka in particular were seen as paradoxically “humanizing” space. By coming back alive, they fed dreams of an interstellar existence for mankind that were particularly powerful in the Soviet context.

Yuri Gagarin reported to have joked: “Am I the first human in space, or the last dog?” It wasn’t such a stretch — the same satellite that Belka and Strelka rode in could be used for human beings, and gave them no more space. A friend of mine, Slava Gerovitch, has written a lot about the Soviet philosophy of space rocket design, and on the low regard the engineers who ran the program had for human passengers and their propensity for messing things up. Gagarin had about as much control over his satellite as Belka and Strelka did over theirs, because neither were trusted to actually fly a satellite. The contrast between the engineering attitudes of the Soviet Vostok and the American Mercury program is evident when you compare their instrument panels. The Mercury pilots were expected to be able to fly, while poor Gagarin was expected to be flown. 

Soviet Space Dogs is a pretty interesting read. It’s a hard read for a dog lover. But seeing the Soviet space dogs in the context of the broader Soviet Space Race, and seeing them as more than just “biological cargo,” raises them from kitsch and trivia. There is also just something so emblematic of the space age about the idea of putting dogs into satellites — taking a literally pre-historic human technology, one of the earliest and most successful results of millennia of artificial breeding, and putting it atop a space-faring rocket, the most futuristic technology we had at the time.

Redactions

Leo Szilard, war criminal?

Friday, February 14th, 2014

Could Leo Szilard have been tried as a war criminal? Now, before anyone starts to wonder if this is a misleading or inflammatory headline, let me say up front: this was a question that Szilard himself posed in a 1949 story published in the University of Chicago Law Review titled, “My Trial as a War Criminal.” It is a work of fiction, but Szilard was serious about the questions it raised about the morality of the atomic bomb.1

Szilard testifying before Congress in the postwar. From the Emilio Segrè Visual Archives.

Szilard testifying before Congress in the postwar. From the Emilio Segrè Visual Archives.

Leo Szilard is one of the most colorful characters in the story of how the atomic bomb got made. An eccentric Hungarian, one of the “Martians” who emigrated to the United States during World War II, Szilard aspired to always being one step of head of the times. You didn’t have to be much ahead to make a difference, he argued, just a little bit. One example of this he gave in a later interview regards his decision to flee Germany shortly after the Reichstag fire. On the day he left, it was an easy trip on an empty train. The next day, the Germans cracked down on those trying to flee. “This just goes to show that if you want to succeed in this world you don’t have to be much cleverer than other people, you just have to be one day earlier than most people. This is all that it takes.”2 In 1939, Szilard was the one who famously got Albert Einstein to write to President Roosevelt, launching the first US government coordination and funding of fission research. During the Manhattan Project itself, Szilard worked at the University of Chicago, helping to develop the first nuclear reactor (CP-1) with Enrico Fermi. After this, though, his active role in the bomb project declined, because General Groves hated the man and worked to exclude him. He attempted in various ways to influence high-level policy regarding the bomb, but was always shut out.

But after the war, Szilard found his place — as a gadfly. He wasn’t a great bomb developer. He was, however, a great spokesman for the dangers of the atomic bomb. Irrepressible, clever, and impossible-to-look-away-from, Szilard could steal the stage, even if no American could pronounce his name. It is in this context that his article, “My Trial as a War Criminal,” was written. The notes on the University of Chicago Law Review version note that it was written in June 1948, but because of “political tensions” Szilard put it off. With the “relaxation” of tensions, Szilard deemed it possible to publish in the Autumn 1949 issue. One wonders exactly what Szilard had in mind; in any case, given that the US first detected the Soviet atomic bomb in September 1949, and from there launched into the acrimonious debate over the hydrogen bomb, it seems like Szilard’s sense of timing in this instance was either perfect or terrible.

Szilard - My Trial as a War Criminal

My Trial as a War Criminal” starts right after World War III has been fought. The Soviet Union has won, after using a new form of biological warfare against the United States.

I was just about to lock the door of my hotel room and go to bed when there was a knock on the door and there stood a Russian officer and a young Russian civilian. I had expected something of this sort ever since the President signed the terms of unconditional surrender and the Russians landed a token occupation force in New York. The officer handed me something that looked like a warrant and said that I was under arrest as a war criminal on the basis of my activities during the Second World War in connection with the atomic bomb. There was a car waiting outside and they told me that they were going to take me to the Brookhaven National Laboratory on Long Island. Apparently, they were rounding up all the scientists who had ever worked in the field of atomic energy. 

In the story, Szilard was given a choice: he could stand trial for being a war criminal, or he could go to Russia and work with them over there. Szilard opted for the former, claiming he had no capability to learn Russian at that point in his life, and that he had no interest in making himself a servant of Soviet science. He is then interrogated at length about his political views and his work on atomic energy. The Soviets have read his articles in the Bulletin of the Atomic Scientists (“Calling for a Crusade” and “Letter to Stalin“) but think they are naive. Szilard reports no real acrimony, however.

His trial for war crimes begins a month later in Lake Success, New York. He was, “apparently as a special favor,” one of the first to be tried. Two major charges were levied against him. The first was that he had tried to push the United States towards developing nuclear weapons in 1939 (the Einstein-Szilard letter). In the eyes of the prosecutor, this was when World War II was still “an imperialist war, since Germany had not attacked Russia until 1941.” The second charge was that he contributed “to the war crime of dropping an atomic bomb on Hiroshima.”

Szilard has several defensive arguments in his favor. First, he points out that he in fact presented a memorandum to (future) Secretary of State James Byrnes in May 1945 which argued that the atomic bomb should not be first used against Japan cities. This memo had been published in the Bulletin as well in December 1947. Second, he also noted that he circulated a petition in July 1945 that called for not using the bomb as a military weapon before giving the Japanese a chance to surrender first, and that he attempted to put it in front of President Truman himself.

Leo Szilard at the University of Chicago in 1954. Source.

Leo Szilard at the University of Chicago in 1954. Source.

Both of these defenses, however, were easily countered. In the case of the memo to Byrnes, an original copy could not be found, and the Bulletin copy had many deletions for security reasons, any one of which could have contradicted the published material. In the case of the petition to Truman, it was noted that it never made it to Truman, because Szilard submitted it by way of General Groves, who of course squashed it. The Russian prosecutor said that Szilard should have known that the architect of the Manhattan Project would never have transmitted such a thing up the chain of command. So neither were considered adequate at exculpating Szilard.

Szilard is then released on bail. The rest of the story concerns the trials of Secretary of War Stimson, Secretary of State Byrnes, and President Truman. This part revolves around a legal discussion of what it means to be a “war crime.” In the story, the tribunal adopts the definition used at Nuremberg that a war crime was any “violations of the customs of war” and “planning a war in violation of international agreements.” The use of the atomic bombs was necessarily a violation of the customs of war, because it was not customary to drop atomic bombs on other nations during World War II. And the Russian prosecutor was able to gather ample evidence that various US officials had urged war with the Soviet Union under conditions not allowed by the United Nations charter, which only allows war in the face of armed attack. So when Byrnes wrote in a book that the United States should consider “measures of last resort” if the Soviets refuse to leave East Germany, this was taken as evidence of the latter charge. (Refusing the leave occupied territory is not an “armed attack,” and “measures of last resort” can only be understood as implying war.)

Stimson’s section gets the closest to the meat of the question — whether the atomic bombs were justified. Stimson’s defense is the same as his 1947 article from Harper’s — that the bombs were used to hasten the war and to save a net number of lives. The Russians point out, however, that even the US Strategic Bombing Survey concluded that the atomic bombs were not necessary to end the war,3 and that Stimson had access to sufficient intelligence about Japanese communications to know that Japan was on its last legs.

Szilard receives notice — in his bathrobe — that he has won the "Atoms for Peace" award in 1960. Source.

Szilard receives notice that he has won the “Atoms for Peace” award in 1960. At the time, he was in a hospital, being treated (successful) for bladder cancer. Source.

In the end, Szilard notes that practically all of them were expected to be found guilty. But a deus ex machina saves the day — the Soviets’ viral biological agents somehow get out to their own populations, their vaccines fail, and the United States is desperately appealed to for assistance. Under new settlement terms, all war crime prosecutions were ended, and “all of us who had been on trial for our lives were greatly relieved.”

Such ends Szilard’s story. It’s a curious one, and doesn’t go where you might think based on the title alone. Szilard seems to be making a strong point about the way in which war crime tribunals always favor the winners, and that if you apply the Nuremberg standards to the United States’ conduct during World War II and the early postwar, it is clear that no one, even a dissident like Szilard, would be safe. It isn’t a hand-wringing, self-flagellating confession. There is none of the “physicists have known sin” moralizing of J. Robert Oppenheimer. It isn’t even a discussion of what happened regarding the atomic bombing, whether it was justified or not, whether it was terrible or not. It is a gentle story, albeit one that subtly introduces a revisionist argument about the bombings of Hiroshima and Nagasaki, one that continues to be debated to this day.

One can also read the piece as being instead a complaint about the definition of “war crimes” from Nuremberg — are they nothing more than using new weapons and talking about war? The actual Nuremberg principles, also include “wanton destruction of cities, towns, or villages, or devastation not justified by military necessity.” Now whether the atomic bombings fall under that is a tricky question — how does one define “justified by military necessity”? On this sort of unclear requirement, the whole edifice hinges.4

Szilard glasses 1960 LIFE

This whole story came to my attention because Bill Lanouette, author of the Szilard biography Genius in the Shadowse-mailed me after seeing my post on Andrei Sakharov. He noted that according to Rhodes’ Dark Sun, Sakharov was very affected by Szilard’s story. Sakharov showed it to his colleague Victor Adamsky, who reported that:

A number of us discussed it. It was about a war between the USSR and the USA, a very devastating one, which brought victory to the USSR. Szilard and a number of other physicists are put under arrest and then face the court as war criminals for having created weapons of mass destruction. Neither they nor their lawyers could make up a cogent proof of their innocence. We were amazed by this paradox. You can’t get away from the fact that we were developing weapons of mass destruction. We thought it was necessary. Such was our inner conviction. But still the moral aspect of it would not let Andrei Dmitrievich and some of us live in peace.5

What’s interesting to me is that the Soviet weapon designers seem to have read Szilard’s story in a much more moralistic light than I did. For me, Szilard’s story is more about the difficulty of having anything like a consistent stand on what “war crimes” might be — that the actions of the United States could easily be seen from another nation’s perspective as highly damning, even if from a more sympathetic position they might be justifiable. Sakharov and Adamsky apparently understood the story to be about the indefensibility of working on weapons of mass destruction full-stop. It is a curious divergence. Assuming my reading is not naive, I might suggest that the Soviet scientists saw not so much what they wanted to see, but what confirmed their existing, latent fears — something in Szilard’s story resonated with something that they already had inside of them, waiting to be released.

Notes
  1. Leo Szilard, “My Trial as a War Criminal,” University of Chicago Law Review 17, no. 1 (Autumn 1949), 79-86. It was later reprinted in Szilard’s book of short stories, The Voice of Dolphins. []
  2. Spencer Weart and Gertrude Weiss Szilard, eds., Leo Szilard: His version of the facts; Selected recollections and correspondence (Cambridge, Mass.: MIT Press, 1978), 14. []
  3. “Based on a detailed investigation of all the facts, and supported by the testimony of the surviving Japanese leaders involved, it is the Survey’s opinion that certainly prior to 31 December 1945, and in all probability prior to 1 November 1945, Japan would have surrendered even if the atomic bombs had not been dropped, even if Russia had not entered the war, and even if no invasion had been planned or contemplated.” []
  4. Szilard’s story also notes that just because these principles were developed after the war ended did not prohibit them from being applied to activities during the war — otherwise all of the Germans would have gotten off the hook. []
  5. Richard Rhodes, Dark sun: The making of the hydrogen bomb (Simon & Schuster, 1995), 582. []
Visions

Sakharov’s turning point: The first Soviet H-bomb test

Friday, January 31st, 2014

The Soviets set off their first megaton-range hydrogen bomb in November 1955. It was the culmination of many years of effort, in trying to figure out how to use the power of nuclear fission to release the power of nuclear fusion in ways that could be scaled up arbitrarily.1 The Soviet bomb was designed to be a 3-megaton warhead, but they set it off at half strength to avoid too much difficulty and fallout contamination. Unlike the US, the Soviets tested their version version by dropping it out of a bomber — it was not a big, bulky, prototype like the Ivy Mike device. But it was not an uneventful test. The details are little talked about, but it serves as an impressive parable about what can go wrong when you are dealing with science on a big scale.

Andrei Sakharov, from nuclear weapons designer to aged dissident.

Andrei Sakharov, from young nuclear weapons designer to aged dissident. Source.

Andrei Sakharov has a stunning chapter on it in his memoirs. It makes for an impressive story in its own right, but Sakharov also identifies the experience as a transformative one in his own thinking about the responsibility of the scientist, as he made his way from nuclear weapons designer to political dissident.2

Sakaharov starts out by talking about going to Kazakhstan to see the test. He had by this time been assigned two armed KGB officers, known euphemistically as “secretaries,” whose jobs were to act as bodyguards and “to prevent undesirable contacts.” Sakharov claims not to be have been too bothered by them. They lived next door.

The test of the device, code-named RDS-37, was to be the 24th Soviet nuclear test, and was the largest ever tested at the Semipalatinsk test site. This created several logistical difficulties. In order to avoid local nuclear fallout, it was going to be an airburst. The size of the bomb, however, brought up the possibility that it might accidentally blow the bomber that delivered it out of the sky. To avoid this, the bomber was painted white (to reflect the thermal radiation), and a big parachute was applied to the bomb so that the bomber could get away fast enough. Sakharov was satisfied enough with the math on this that he asked if he could ride along on the bomber, but the request was denied.

Sakharov’s account lingers on the incongruity between testing nuclear weapons in beautiful, wild places. Siberia was “a new and spellbinding experience for me, a majestic, amazingly beautiful sight.” He continued: “The dark, turbulent waters of the Irtysh, dotted with a thousand whirlpools, bore the milky-blue ice floes northward, twisting them around and crashing them together. I could have watched for hours on end until my eyes ached and my head spun. Nature was displaying its might: compared to it, all man’s handiwork seems paltry imitation.

The RDS-37 test device. Source.

The RDS-37 test device. Source.

A test trial-run on November 18th went smoothly, but the first test attempt, on November 20th, did not. As David Holloway recounts in Stalin and the Bomb, that same Siberian wintery majesty that dazzled Sakharov made for difficult testing conditions.3 The fully-loaded Tu-16 bomber had to abort when the test site was unexpectedly covered by clouds, making them unable to see the target aiming point and rendering the optical diagnostic systems inoperable. The plane was ordered to land, only now it had a fully-armed experiment H-bomb on board. There was concern that if it crashed, it could result in a nuclear yield… destroying the airfield and a nearby town. The airfield had meanwhile iced over. Igor Kurchatov, the lead Soviet nuclear weapons scientist, drove out to the airfield himself personally to see the airfield. Sakharov assured him that even if it crashed, the odds of a nuclear yield were low. An army unit at the airfield quickly worked to clear the runway, and so Kurchatov ordered the plane to land. It did so successfully. Kurchatov met the crew on the field, no doubt relieved. Sakharov recalls him saying, “One more test like [this one] and I’m retiring.” As for Sakharov, he called it “a very long day.”

Two days later, they gave it another go. This time the weather cooperated, as much as Siberian weather cooperates. The only strange thing was a temperature inversion, which is to say, at higher altitudes it was warmer than at lower altitudes, the opposite of the usual. The meteorologists gave the go-ahead for the testing.

Sakharov stayed at a laboratory building on the outskirts of a small town near the test site. An hour before the test, Sakharov saw the bomber rising above the town. It was “dazzling white,” and “with its sweptback wings and slender fuselage extending far forward, it looked like a sinister predator poised to strike.” He recalled that “for many peoples, the color white symbolizes death.” An hour later, a loud-speaker began the countdown.

The white bomber. Source.

The white bomber. Source.

Sakharov described the test in vivid detail:

This time, having studied the Americans’ Black Book4, I did not put on dark goggles: if you remove them after the explosion, your eyes take time to adjust to the glare; if you keep them on, you can’t see much through the dark lenses. Instead, I stood with my back to ground zero and turned around quickly when the building and horizon were illuminated by the flash. I saw a blinding, yellow-white sphere swiftly expand, turn orange in a fraction of a second, then turn bright red and touch the horizon, flattening out at its base. Soon everything was obscured by rising dust which formed an enormous, swirling grey-blue cloud, its surface streaked with fiery crimson flashes. Between the cloud and the swirling durst grew a mushroom stem, even thicker than the one that had formed during the first [1953] thermonuclear test. Shock waves crisscrossed the sky, emitting sporadic milky-white cones and adding to the mushroom image. I felt heat like that from an open furnace on my face — and this was in freezing weather, tens of miles from ground zero. The whole magical spectacle unfolded in complete silence. Several minutes passed, and then all of the sudden the shock wave was coming at us, approaching swiftly, flattening the feather-grass.

“Jump!” I shouted as I leaped from the platform. Everyone followed my example except for my bodyguard (the younger one was on duty that day); he evidently felt he would be abandoning his post if he jumped. The shock wave blasted our ears and battered our bodies, but all of us remained on our feet except for the bodyguard on the platform, who fell and suffered minor bruises. The wave continued on its way, and we heard the crash of broken glass. Zeldovich raced over to me, shouting: “It worked! It worked! Everything worked!” Then he threw his arms around me. […]

The test crowned years of effort. It opened the way for a whole range of devices with remarkable capabilities, although we still sometimes encountered unexpected difficulties in producing them.

But they soon learned that a bruised bodyguard was the least of the injuries sustained in the test. Scientists and soldiers had been stationed far closer to the blast than Sakharov was. The scientists were fine — they were lying flat on the ground and the blast wave caused them no injury. One of them lost his cool and ran away from the blast, but he was only knocked down by it. But a nearby trench held a platoon of soldiers, and the trench collapsed. One young soldier, in his first year of service, was killed.

RDS-37 detonation

RDS-37, detonating. This is considerably sped up; it shows about 50 seconds of footage compressed into only a few seconds. Video source here.

There was also a nearby settlement of civilians affected by the blast wave. In theory it was at a distance remote enough to avoid anything serious; this had been calculated. But the aforementioned inversion layer reflected the shock wave back down to Earth with unusual vehemence — underscoring how even a little misunderstanding of the physics can translate into real problems when you are talking about millions of tons of TNT (something learned by the US a year earlier, at the Castle Bravo test). The inhabitants of the town were in a primitive bomb shelter. After the flash, they exited to see the cloud. Inside the shelter, however, was left a two-year-old girl, playing with blocks. The shock wave, arriving well after the flash, collapsed the shelter, killing the child. 

The ceiling of a woman’s ward of a hospital in another nearby village collapsed, seriously injuring many people. Glass windows broke at a meat-packing plant a hundred miles from the test site, sprinkling ground beef with splinters. Windows broke throughout the town where Sakharov was stationed.

RDS-37, seen from a local town. Also sped up. Same source as the previous.

The consequences of an explosion are hard to predict,” Sakharov concluded.

Had we been more experienced, the temperature inversion would have caused us to delay the test. The velocity of the shock wave increases as the temperature does: if the air temperature rises with altitude, the shock wave bends back towards the ground and does not dissipate as fast under normal conditions. This was the reason the shock wave’s force exceeded our predictions. Casualties might have been avoided if the test had been conducted as scheduled on November 20, when there was no temperature inversion.

As with Castle Bravo, there was a grim, almost literary connection between technical success and human disaster. They had shown the way forward for deployable, multi-megaton hydrogen bombs, but with a real cost — and that cost only an insignificant hint of what would happen if the weapons were used in war. Sakharov concluded:

We were stirred up, but not just with the exhilaration that comes with a job well done. For my part, I experienced a range of contradictory sentiments, perhaps chief among them a fear that this newly released force could slip out of control and lead to unimaginable disasters. The accident reports, and especially the deaths of the little girl and the soldier, heightened my sense of foreboding. I did not hold myself personally responsible for their deaths, but I could not escape a feeling of complicity.

That night, the scientists, the politicians, and the military men dined well. Brandy was poured. Sakharov was asked to give the first toast. “May all of our devices explode as successfully as today’s, but always over test sites and never over cities.”

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

The immediate response was silence. Such things were not to be said. One of the military higher-ups flashed a crooked grin, and stood to give his own toast. “Let me tell a parable. An old man wearing only a shirt was praying before an icon. ‘Guide me, harden me. Guide me, harden me.’ His wife, who was lying on the stove, said: ‘Just pray to be hard, old man, I can guide it myself.’ Let’s drink to getting hard.

Sakharov blanched at the crudity (“half lewd, half blasphemous”), and its serious implications. “The point of his story,” he later wrote, “was clear enough. We, the inventors, scientists, engineers, and craftsmen, had created a terrible weapon, the most terrible weapon in human history; but its use would lie entirely outside our control. The people at the top of the Party and military hierarchy would make the decisions. Of course, I knew this already — I wasn’t that naive. But understanding something in an abstract way is different from feeling it with your whole being, like the reality of life and death. The ideas and emotions kindled at that moment have not diminished to this day, and they completely altered my thinking.

Notes
  1. The Soviets tested their first thermonuclear bomb in 1953, the RDS-6s, which used fusion reactions. But it was not a true, multi-megaton capable hydrogen bomb. The 1953 device was “just” a very, very big boosted bomb, where 40 kilotons of fissioning produced 80 kilotons of fusioning which in turn produced another 280 kilotons of fissioning, for 400 kilotons total. The design could not be scaled up arbitrarily, though, and it did not use radiation implosion (like the Teller-Ulam design, known in the USSR as the “Third Idea.” It was a big bomb, but the 1955 test was the design that became the basis for their future nuclear warheads. []
  2. Andrei Sakharov, Memoirs, trans. Richard Lourie (New York: Knopf, 1990), 188-196. []
  3. David Holloway, Stalin and the bomb: The Soviet Union and atomic energy, 1939- 1956 (New Haven: Yale University Press, 1994), 314-316. []
  4. From elsewhere in the Memoirs, it seems that Sakharov may be referring here to the 1950 edition of Samuel Glasstone’s The Effects of Atomic Weapons. There was a hardcover edition that apparently had a black cover. Sakharov notes that the nick-name only “partly” came from the cover; he implies that the contents are “black” as well. However there is nothing about goggles or glare in the version of the text I have, so maybe it is something different. []
Meditations

Liminal 1946: A Year in Flux

Friday, November 8th, 2013

There are lots of important and exciting years that people like to talk about when it comes to the history of nuclear weapons. 1945 obviously gets pride of place, being the year of the first nuclear explosion ever (Trinity), the first  and only uses of the weapons in war (Hiroshima and Nagasaki), and the end of World War II (and thus the beginning of the postwar world). 1962 gets brought up because of the Cuban Missile Crisis. 1983 has been making a resurgence in our nuclear consciousness, thanks to lots of renewed interest in the Able-Archer war scare. All of these dates are, of course, super important.

Washington Post - January 1, 1946

But one of my favorite historical years is 1946. It’s easy to overlook — while there are some important individual events that happen, none of them are as cataclysmic as some of the events of the aforementioned years, or even some of the other important big years. But, as I was reminded last week while going through some of the papers of David Lilienthal and Bernard Baruch that were in the Princeton University archives, 1946 was something special in and of itself. It is not the big events that define 1946, but the fact that it was a liminal year, a transition period between two orders. For policymakers in the United States, 1946 was when the question of “what will the country’s attitude towards the bomb be?” was still completely up for grabs, but over the course of the year, things became more set in stone.

1946 was a brief period when anything seemed possible. When nothing had yet calcified. The postwar situation was still fluid, and the American approach towards the bomb still unclear.

Part of the reason for this is because things went a little off the rails in 1945. The bombs were dropped, the war had ended, people were pretty happy about all of that. General Groves et al. assumed that Congress would basically take their recommendations for how the bomb should be regarded in the postwar (by passing the May-Johnson Bill, which military lawyers, with help from Vannevar Bush and James Conant, drafted in the final weeks of World War II). At first, it looked like this was going to happen — after all, didn’t Groves “succeed” during the war? But in the waning months of 1945, this consensus rapidly deteriorated. The atomic scientists on the Manhattan Project who had been dissatisfied with the Army turned out to make a formidable lobby, and they found allies amongst a number of Senators. Most important of these was first-term Senator Brien McMahon, who quickly saw an opportunity to jump into the limelight by making atomic energy his issue. By the end of the year, not only did Congressional support fall flat for the Army’s Bill, but even Truman had withdrawn support for it. In its place, McMahon suggested a bill that looked like something the scientists would have written — a much freer, less secret, civilian-run plan for atomic energy.

So what happened in 1946? Let’s just jot off a few of the big things I have in mind.

January: The United Nations meets for the first time. Kind of a big deal. The UN Atomic Energy Commission is created to sort out questions about the future of nuclear technology on a global scale. Hearings on the McMahon Bill continue in Congress through February.

Igor Gouzenko (masked) promoting a novel in 1954. The mask was to help him maintain his anonymity, but you have to admit it adds a wonderfully surreal and theatrical aspect to the whole thing.

Igor Gouzenko (masked) promoting a novel in 1954. The mask was to help him maintain his anonymity, but you have to admit it adds a wonderfully surreal and theatrical aspect to the whole thing.

February: The first Soviet atomic spy ring is made public when General Groves leaks information about Igor Gouzenko to the press. Groves wasn’t himself too concerned about it — it was only a Canadian spy ring, and Groves had compartmentalized the Canadians out of anything he considered really important — but it served the nice purpose of dashing the anti-secrecy lobby onto the rocks.

Also in February, George F. Kennan sends his famous “Long Telegram” from Moscow, arguing that the Soviet Union sees itself in essential, permanent conflict with the West and is not likely to liberalize anytime soon. Kennan argues that containment of the USSR through “strong resistance” is the only viable course for the United States.

March: The Manhattan Engineer District’s Declassification Organization starts full operation. Groves had asked the top Manhattan Project scientists to come up with the first declassification rules in November 1945, when he realized that Congress wasn’t going to be passing legislation as soon as he expected. They came up with the first declassification procedures and the first declassification guides, inaugurating the first systematic approach to deciding what was secret and what was not.

Lilienthal's own copy of the mass-market edition of the Acheson-Lilienthal Report, from the Princeton University Archives.

Lilienthal’s own copy of the mass-market edition of the Acheson-Lilienthal Report, from the Princeton University Archives.

March: The Acheson-Lilienthal Report is completed and submitted, in secret, to the State Department. It is quickly leaked and then was followed up by a legitimate publication by the State Department. Created by a sub-committee of advisors, headed by TVA Chairman David Lilienthal and with technical advice provided by J. Robert Oppenheimer, the Acheson-Lilienthal Report argued that the only way to a safe world was through “international control” of atomic energy. The scheme they propose is that the United Nations create an organization (the Atomic Development Authority) that would be granted full control over world uranium stocks and would have the ability to inspect all facilities that used uranium in significant quantities. Peaceful applications of atomic energy would be permitted, but making nuclear weapons would not be. If one thought of it as the Nuclear Non-Proliferation Treaty, except without any authorized possession of nuclear weapons, one would not be too far off the mark. Of note is that it is an approach to controlling the bomb that is explicitly not about secrecy, but about physical control of materials. It is not loved by Truman and his more hawkish advisors (e.g. Secretary of State Byrnes), but because of its leak and subsequent publication under State Department header, it is understood to be “the” position of the United States government on the issue.

April: The McMahon Act gets substantial modifications while in committee, including the creation of a Military Liaison Committee (giving the military an official position in the running of the Atomic Energy Commission) and the introduction of a draconian secrecy provision (the “restricted data” concept that this blog takes its name from).

June: The Senate passes the McMahon Act. The House starts to debate it. Several changes are made to the House version of the bill — notably all employees with access to “restricted data” must now be investigated by the FBI and the penalty for misuse or espionage of “restricted data” is increased to death or life imprisonment. Both of these features were kept in the final version submitted to the President for signature in July.

June: Bernard Baruch, Truman’s appointee to head the US delegation of the UN Atomic Energy Commission, presents a modified form of the Acheson-Lilienthal Report to the UNAEC, dubbed the Baruch Plan. Some of the modifications are substantial, and are deeply resented by people like Oppenheimer who see them as torpedoing the plan. The Baruch Plan, for example, considered the question of what to do about violations of the agreement something that needed to be hashed out explicitly and well in advance. It also argued that the United States would not destroy its (still tiny) nuclear stockpile until the Soviet Union had proven it was not trying to build a bomb of their own. It was explicit about the need for full inspections of the USSR — a difficulty in an explicitly closed society — and stripped the UN Security Council of veto power when it came to enforcing violations of the treaty. The Soviets were, perhaps unsurprisingly, resistant to all of these measures. Andrei Gromyko proposes a counter-plan which, like the Baruch Plan, prohibits the manufacture and use of atomic weaponry. However, it requires full and immediate disarmament by the United States before anything else would go into effect, and excludes any international role in inspection or enforcement: states would self-regulate on this front.

Shot "Baker" of Operation Crossroads — one of the more famous mushroom clouds of all time. Note that the mushroom cloud itself is not the wide cloud you see there (which is a brief condensation cloud caused by it being an underwater detonation), but is the more bulbous cloud you see peaking out of the top of that cloud. You can see the battleships used for target practice near base of the cloud. The dark mark on the right side of the stem may be an upturned USS Arkansas.

Shot “Baker” of Operation Crossroads — one of the more famous mushroom clouds of all time. Note that the mushroom cloud itself is not the wide cloud you see there (which is a brief condensation cloud caused by it being an underwater detonation), but is the more bulbous cloud you see peaking out of the top of that cloud. You can see the battleships used for target practice near base of the cloud. The dark mark on the right side of the stem may be an upturned USS Arkansas.

July: The first postwar nuclear test series, Operation Crossroads, begins in the Bikini Atoll, Marshall Islands. Now this is a curious event. Ostensibly the United States was in favor of getting rid of nuclear weapons, and in fact had not yet finalized its domestic legislation about the bomb. But at the same time, it planned to set off three of them, to see their effect on naval vessels. (They decided to only set off two, in the end.) The bombs were themselves still secret, of course, but it was decided that this event should be open to the world and its press. Even the Soviets were invited! As one contemporary report summed up:

The unique nature of the operation was inherent not only in its huge size — the huge numbers of participating personnel, and the huge amounts of test equipment and number of instruments involved — it was inherent also in the tremendous glare of publicity to which the tests were exposed, and above all the the extraordinary fact that the weapons whose performance was exposed to this publicity were still classified, secret, weapons, which had never even been seen except by a few men in the inner circles of the Manhattan District and by those who had assisted in the three previous atomic bomb detonations. It has been truly said that the operation was “the most observed, most photographed, most talked-of scientific test ever conducted.” Paradoxically, it may also be said that it was the most publicly advertised secret test ever conducted.1

August: Truman signs the McMahon Act into law, and it becomes the Atomic Energy Act of 1946. It stipulates that a five-person Atomic Energy Commission will run all of the nation’s domestic atomic energy affairs, and while half of the law retains the “free and open” approach of the early McMahon Act, the other half has a very conservative and restrictive flavor to it, promising death and imprisonment to anyone who betrays atomic secrets. The paradox is explicit, McMahon explained at the time, because finding a way to implement policy between those two extremes would produce rational discussion. Right. Did I mention he was a first-term Senator? The Atomic Energy Commission would take over from the Manhattan Engineer District starting in 1947.

A meeting of the UN Atomic Energy Commission in October 1946. Bernard Baruch is the white-haired man sitting at the table at right behind the “U.S.A” plaque. At far top-right of the photo is Robert Oppenheimer. Two people above Baruch, in the very back, is General Groves. Directly below Groves is Manhattan Project scientist Richard Tolman. British physicist James Chadwick sits directly behind the U.K. representative at the table.

A meeting of the UN Atomic Energy Commission in October 1946. At front left, speaking, is Andrei Gromyko. Bernard Baruch is the white-haired man sitting at the table at right behind the “U.S.A” plaque. At far top-right of the photo is a pensive J. Robert Oppenheimer. Two people above Baruch, in the very back, is a bored-looking General Groves. Directly below Groves is Manhattan Project scientist Richard Tolman. British physicist James Chadwick sits directly behind the U.K. representative at the table.

September: Baruch tells Truman that international control of atomic energy seems nowhere in sight. The Soviet situation has soured dramatically over the course of the year. The Soviets’  international control plan, the Gromyko Plan, requires full faith in Stalin’s willingness to self-regulate. Stalin, for his part, is not willing to sign a pledge of disarmament and inspection while the United States is continuing to build nuclear weapons. It is clear to Baruch, and even to more liberal-minded observers like Oppenheimer, that the Soviets are probably not going to play ball on any of this, because it would not only require them to forswear a potentially important weapon, but because any true plan would require them to become a much more open society.

October: Truman appoints David Lilienthal as the Chairman of the Atomic Energy Commission. Lilienthal is enthusiastic about the job — a New Deal technocrat, he thinks that he can use his position to set up a fairly liberal approach to nuclear technology in the United States. He is quickly confronted by the fact that the atomic empire established by the Manhattan Engineer District has decayed appreciably in year after the end of the war, and that he has powerful enemies in Congress and in the military. His confirmation hearings start in early 1947, and are exceptionally acrimonious. I love Lilienthal as an historical figure, because he is an idealist who really wants to accomplish good things, but ends up doing almost the opposite of what he set out to do. To me this says a lot about the human condition.

November: The US Atomic Energy Commission meets for the first time in Oak Ridge, Tennessee. They adopt the declassification system of the Manhattan District, among other administrative matters.

December: Meredith Gardner, a cryptanalyst for the US Army Signal Intelligence Service, achieves a major breakthrough in decrypting wartime Soviet cables. A cable from 1944 contains a list of scientists working at Los Alamos — indications of a serious breach in wartime atomic security, potentially much worse than the Canadian spy ring. This information is kept extremely secret, however, as this work becomes a major component in the VENONA project, which (years later) leads to the discovery of Klaus Fuchs, Julius Rosenberg, and many other Soviet spies.

On Christmas Day, 1946, the Soviet Union’s first experimental reactor, F-1, goes critical for the first time.

The Soviet F-1 reactor, in 2009. It remains operational today — the longest-lived nuclear reactor by far.

The Soviet F-1 reactor, in 2009. It remains operational today — the longest-lived nuclear reactor by far.

No single event on that list stands out as on par with Hiroshima, the Cuban Missile Crisis, or even the Berlin Crisis. But taken together, I think, the list makes a strong argument for the importance of 1946. When one reads the documents from this period, one gets this sense of a world in flux. On the one hand, you have people who are hoping that the re-ordering of the world after World War II will present an enormous opportunity for creating a more peaceful existence. The ideas of world government, of the banning of nuclear weapons, of openness and prosperity, seem seriously on the table. And not just by members of the liberal elite, mind you: even US Army Generals were supporting these kinds of positions! And yet, as the year wore on, the hopes began to fade. Harsher analysis began to prevail. Even the most optimistic observers started to see that the problems of the old order weren’t going away anytime soon, that no amount of good faith was going to get Stalin to play ball. Which is, I should say, not to put all of the onus on the Soviets, as intractable as they were, and as awful as Stalin was. One can imagine a Cold War that was less tense, less explicitly antagonistic, less dangerous, even with limitations that the existence of a ruler like Stalin imposed. But some of the more hopeful things seem, with reflection, like pure fantasy. This is Stalin we’re talking about, after all. Roosevelt might have been able to sweet talk him for awhile, but even that had its limits.

We now know, of course, that the Soviet Union was furiously trying to build its own atomic arsenal in secret during this entire period. We also know that the US military was explicitly expecting to rely on atomic weapons in any future conflict, in order to offset the massive Soviet conventional advantage that existed at the time. We know that there was extensive Soviet espionage in the US government and its atomic program, although not as extensive as fantasists like McCarthy thought. We also know, through hard experience, that questions of treaty violations and inspections didn’t go away over time — if anything, I think, the experience of the Nuclear Non-Proliferation Treaty has shown that many of Baruch’s controversial changes to the Acheson-Lilienthal Report were pretty astute, and quickly got to the center of the political difficulties that all arms control efforts present.

As an historian, I love periods of flux and of change. (As an individual, I know that living in “interesting times” can be pretty stressful!) I love looking at where old orders break down, and new orders emerge. The immediate postwar is one such period — where ideas were earnestly discussed that seemed utterly impossible only a few years later. Such periods provide little windows into “what might have been,” alternative futures and possibilities that never happened, while also reminding us of the forces that bent things to the path they eventually went on.

Notes
  1. Manhattan District History, Book VIII, Los Alamos Project (Y) – Volume 3, Auxiliary Activities, Chapter 8, Operation Crossroads (n.d., ca. 1946). []
Redactions

How many people worked on the Manhattan Project?

Friday, November 1st, 2013

Everyone knows the Manhattan Project was big. But how big was it? There are lots of ways to try and convey the bigness. The size of the buildings and sites, for example. Or the cost — $2 billion 1945 USD, which doesn’t sound that big, even when converted to modern numbers (e.g. around $30 billion 2012 USD, depending on the inflator you use), since we’re used to billions being tossed around like they are nothing these days. But consider that the USA spent about $300 billion on World War II as a whole — so that means that the atomic bombs made up for a little under 1% of the cost of the entire war. Kind of impressive, but even then, it’s hard to wrap one’s head around something like “the cost of World War II.”

General Groves speaks to a group of Oak Ridge service personnel in August 1945. From the DOE. There are lots of great Oak Ridge photos from the 1940s in this Flickr set.

General Groves speaks to a group of Oak Ridge service personnel in August 1945. From the DOE. There are lots of great Oak Ridge photos from the 1940s in this Flickr set.

Another approach is to talk about how many people were involved. There are a number of various estimates floating around. Instead of focusing on those, I want to jump directly to the source: a once-secret postwar report on Manhattan Project personnel practices that includes some raw numbers on hiring.1

This report has two very interesting graphs in it. The first is this one, showing total employment by month, broken into the various important Manhattan Project categories:

Manhattan Project contractor employment by month

Let’s just take a moment to marvel at this. They went from pretty much just talking about a bomb, in theory, on paper, in late 1942, and had a project with 125,310 active employees at its peak, 22 months later. That’s a huge ramp-up.

I like this graph because it helps you see, very plainly, the progress of the project. You can see that Oak Ridge (CEW) and Hanford (HEW) construction both got rolling pretty quickly but took about a year to hit their maximums, and that all construction peaked in early 1944. At which point, operations became the main issue — running the plants. It’s interesting to compare how many more people were required for Oak Ridge operations than Hanford operations, and that the “Santa Fe Operations” — Los Alamos, et al. — barely registers on the graph. A couple thousand people at most.

You can also see how rapidly that curve starts to drop off in September 1945 — over 10,000 people left at the end of the war, a significant chunk of them being Oak Ridge operations personnel. There is then a long slumping decline until late 1946, when you start to get an up-tick. This maps on pretty well with what we know about the history of the Manhattan Project in the period before the Atomic Energy Commission took over: Groves’ hard-built empire decayed under the uncertainty of the postwar and the dithering of Congress.

This is where we get the number one usually sees cited for the Manhattan Project: 125,000 or so employees at its peak. Which is impressive… but also kind of misleading. Why? Because peak employment is not cumulative employment. That is, the number of people who work at any given company today are not the number of people who have worked there over the course of its lifetime. Obvious enough, but if one is wondering how many people did it take to make the atomic bomb, one wants to know the cumulative employment, not the number on hand at any one time, right?

Digging around a bit more in the aforementioned personnel statistics of the Manhattan Project (a thrilling read, I assure you), I found this rather amazing graph of the total number of hires and terminations by the project:

Manhattan District Contractors Hires and Terminations through 31 December 1946

Now that number on the left, the total hires, is a pretty big one — over 600,000 total. Unlike the other graph, I don’t have the exact figure for this, but it looks to be around 610,000. That’s a huge number. Why would the numbers be at such odds? Because at the big sites — Oak Ridge and Hanford — there was a pretty high rate of turnover, as the “terminations” bar indicates: over 560,000 people left their jobs on the Manhattan Project by December 1946.

Some of this, of course, is because the job was done and they went home — once the construction was done, you didn’t need as many people working on construction anymore. But it’s also because even during the war, there was a considerable amount of people either quitting or getting fired. People left their jobs all the time, at all times during the war. As the report indicates, the reasons and rates varied by site. For construction at Hanford, they had an average monthly turnover rate of 20%, with a ratio of resignations to discharges set at 3 to 1. Of those who resigned, 26% did so because of illness, 19% were to move to another location (which could be a lot of things), 13% cited poor working conditions, 13% said there was an illness in the family, 14% had got another job somewhere else, 7% cited the poor living conditions, 6% got drafted or otherwise joined the military, and 2% complained about wages. Of those who were discharged, about a quarter of the time it was because they were an “unsatisfactory worker,” and the rest of the time it was because of chronic absenteeism. For construction at Oak Ridge, the average turnover rate was 17%, with mostly the same reasons given, though the resignations to discharge ratio was 2 to 1. (More people, by percentage, complained about the living conditions at Oak Ridge than at Hanford.) For the operations at Oak Ridge, the turnover rate was 6.6%, with a resignations to discharge ration of 1.3 to 1 — of those who left, a little over 40% did so because they were fired.

A 1944 "Stay on the job" rally at J.A. Jones Construction Co. in Oak Ridge. The workers seem a little unimpressed. Source.

A 1944 “Stay on the job” rally at J.A. Jones Construction Co. in Oak Ridge. The workers seem a little unimpressed. Source.

Of course, these numbers run through the entire tenure of the Manhattan Engineer District. When most people want to know how many people it took to make the bomb, they want to know up until August 1945 or so. I don’t have exact numbers on this. However, if we take the data from the report and the graphs, and assume an average monthly turnover rate of about 17% for the entire project, we end up with about the right number total.2 Subtracting all of the people added after August 1945, we get around 485,000 total people required to make the bombs during World War II. Given how much of that employment was front-loaded (again, with a peak in June 1944), I don’t think it’s too far off to assume that probably half a million people were employed to make the bomb. Which, to put that in perspective, means that during World War II, approximately 0.4% of all Americans worked on the bomb project — about one out of every 250 people in the country at the time.

Which is pretty impressive. By contrast, I’ve seen estimates that said that the Soviets used about 600,000 people total to make their atomic bomb. Which is not too different a number, actually — a bit less impressive than one might think if one is only comparing it to the peak of the Manhattan Project. The Soviets had around 170 million people at the time, so it works out to be a pretty similar percentage of the total population as the American project. Of course, one suspects that fewer of the Soviet workers were able to quit because they didn’t like the wage and working conditions. Though I’m sure they had their own form of grim “turnover.”

Notes
  1. Manhattan District History, Book I – General, Volume 8 – Personnel (dated 19 February 1946 but with numbers that suggest later additions were made. []
  2. If you want to play with the data yourself, I’ve uploaded it here as a CSV file. Some of it is extrapolated from the top graph. []