Posts Tagged ‘Soviet Union’


Mapping the US nuclear war plan for 1956

Monday, May 9th, 2016

A few months back, the National Security Archive made national headlines when they released a 1956 US target list they had obtained under the Freedom of Information Act. The target list outlined over a thousand Strategic Air Command nuclear targets in the Soviet Union, Eastern Bloc, the People’s Republic of China, and North Korea. The Archive had posted a small graphic of the ones in Eastern Europe, but hadn’t digitized the full list. Several weeks ago, the people at the Future of Life Institute did just this, digitizing the complete dataset — no small task, given that these were spread over several hundred, non-OCR-able pages of smudgy, 60-year-old government documents.1

A sampling of the 1956 target list obtained by the National Security Archive. The digits encode latitude and longitude points, among other bits of information.

A sampling of the 1956 target list obtained by the National Security Archive. The digits encode latitude and longitude points, among other bits of information.

I recently attended a conference that the FLI put on regarding nuclear war. FLI was co-founded by the MIT physicist Max Tegmark and his wife Meia (among a few others), both of whom I was glad I got to spend some time with, as they are interesting, intelligent people with interesting histories. They are interested in promoting work that decreases existential threats to the human race, which they see as possibly including things like nuclear war and nuclear winter, but also unhampered artificial intelligence, climate change, and the possible negative futures of biotechnology. These are all, of course, controversial topics (not always controversial among the same groups of people, to be sure). They’re an interesting group, and they are stirring up some interesting discussions, which I think is an unambiguously positive thing even if you don’t agree that all of these things are equally realistic threats, or threats on the same level.2

The FLI's digitized version of the target list. Click the image to view their interactive version.

The FLI’s digitized version of the target list. Click the image to view their interactive version.

The target list, mapped out as the FLI did above, is already pretty impressive. While I was at the conference, I got the idea that it wouldn’t be that hard to reconfigure a few parts of the NUKEMAP code to allow me to import huge numbers of target lists in the right format. NUKEMAP already supports the targeting of multiple nukes (the feature is a little cryptic — you create a detonation, then click “launch multiple,” then move the cursor and can then create another one, and repeat as necessary), but it didn’t have any automatic way of importing a large number of settings. Once I had done that, I then thought, what would it look like if I used realistic weather data to determine the fallout patterns from surface bursts? It only took a little bit of further work to write a script that can poll OpenWeatherMap‘s public API and grab information about real-time wind speed and direction information about any given set of coordinates.3 This renders quite an impressive image, though to do this for some 1,154 targets requires a lot of RAM (about 1.5 GB) and a fast computer. So it’s not something one wants to necessarily do all the time.

I have captured the results as a series of interactive screenshots, to better save you (and your web browser) the trouble of trying to render these yourself. You can see how changing the yield dramatically changes the fallout (assuming surface bursts, of course). The interactive viewer is available by clicking the image below, or this link.4

Screenshot of my interactive viewer for the nuclear war plan. Click to view.

Screenshot of my interactive viewer for the nuclear war plan. Click to view.

I also sampled weather data from a few days in a row, to see what differences it made from a practical standpoint. It is remarkable how different wind speed and direction can vary from day to day. In some of these “simulations,” Copenhagen, Denmark, avoids fallout. In others, it does not. Under some weather conditions (and yield selections), northern Japan gets some fallout from an attack on the Soviet-controlled Kuril Islands; in others, it does not. The NUKEMAP’s fallout estimator is, of course, a very simplified model, but even with that you can get a sense of how much difference a shift in the winds can make.

Having done that, I started to wonder: what would the casualties of such an attack look like? I don’t have population density data of the relevant areas from 1956 that has sufficient granularity to be used with my normal NUKEMAP casualty estimating script, but I figured that even the present-day population figures would be interesting. If you try to query the casualty database with over a thousand targets it just says “no,” so I wrote another script that would query it target-by-target and tally the results.

The results were a bit staggering. I mean, I assumed it would be a large number. But they are really large numbers. Some of this is because the casualty script is double-counting “victims” when they are inside the relevant blast areas of multiple detonations. At the moment, there’s no easy way around that (even for a small number of detonations, keeping track of who is already “dead” would require a lot of time and processing power, and to do it on the scale of a thousand is just not possible with the way it is set up currently).

An example of an area where a lot of "double-counting" is taking place — St. Petersburg. The circles show various pressure rings for 1 Mt weapons, which are used by NUKEMAP to calculate casualties. Maybe just a little overkill...

An example of an area where a lot of “double-counting” is taking place — St. Petersburg. The circles show various pressure rings for 1 Mt weapons, which are used by NUKEMAP to calculate casualties. Maybe just a little overkill…

On the other hand, the casualty estimate does not take into account fallout-related casualties, or the long-term casualties caused by the destruction of so much infrastructure. The target list also doesn’t tell us how many targets were, in fact, targeted redundantly with multiple weapons — the idea that it might have been “one nuke, one target” is definitely an incorrect one. Even before World War II had completely ended, US planners for nuclear war against the Soviet Union understood that not every bomb would make it to a target, and so planned for multiple weapons to be targeted on each. So “double-killing” those people in some of these locations is probably not so wrong. It likely isn’t all that crazy to think of these numbers as back-of-the-envelope estimates for what would result if you waged this kind of attack today (which is not to imply that the US would necessarily do such a thing). But I don’t want anyone to think I am implying any kind of real certainty here. I would, in fact, be dubious of anyone, at any time, implying a lot of certainty about these kinds of things, because we (fortunately) lack very much first-hand experience with this kind of “data,” outside of the results at Hiroshima and Nagasaki, which were in many ways particular to their time and place.

Casualty figures, of course, require making assumptions about the size of the nuclear weapons used, as well as the fuzing settings (airbursts generate far less downwind fallout in comparison to surface bursts, but they can greatly increase the casualties for people in civilian structures). For 1956, there would have been a “mix” of yields and types of weapons. We don’t have data on that to my knowledge. As a simplifying assumption, I just ran the casualty calculation with a number of yields, and with both surface burst and airbursts (optimized to increase the range of the 5 psi blast area) options. For the sake of space and avoiding the appearance of false precision, I have rounded them to their nearest million below:

surface burst airburst
injuries fatalities injuries fatalities
10 Mt 259 239 517 304
5 Mt 210 171 412 230
1 Mt 120 70 239 111
500 kt 89 46 185 77
100 kt 39 16 94 30
50 kt 25 10 66 19

At first I thought some of these numbers just seemed fantastical. Russia today only has a population of 140 million or so. How could we get up to numbers so high? Some of this is, again, because of double-counting, especially with the very big bomb — if you run a 10 Mt bomb on Moscow kills 5.5 million people, and injures 4 million, by NUKEMAP’s estimate, which combined is 70% of the 13 million people in the area of the 1 psi blast radius of such a weapon. (If that seems high, remember that a 10 Mt bomb goes well outside the city of Moscow itself — the Great Moscow Metro Region is about 16 million people total.) Since a large number of nukes were targeted around Moscow, that’s a lot of double counting, especially when you use them with such high-yield weapons.

So the very-big numbers I would take with a very hefty grain of salt. NUKEMAP’s casualty estimator really isn’t meant for guessing multiple, overlapping damage areas. At best, it attempts to give back-of-the-envelope estimates for single detonations. Separately, the US arsenal at the time was around 10,000 megatons worth of destructive power. So they obviously couldn’t have been (and wouldn’t have been) all multi-megaton monsters. But, all the same, I don’t think it’s at all improbable that the multi-megaton monsters that were in the arsenal would have been targeted at heavily populated regions, like Moscow. Especially given the fact that, again, there would have been multiple nukes aimed at each target.

I also thought it would be interesting to take the casualties and break them apart by region. Here’s where I found some really startling results, using a 1 Megaton (1,000 kiloton) airburst as my “model” detonation, again in millions:

injuries fatalities
Soviet Union 111 55
Warsaw Pact 23 10
China + North Korea 104 46
239 111

To make this point more clearly: 820 of the 1,154 targets were inside the Soviet Union proper. They are responsible for 48% of the casualties in the above scenario. Non-Soviet countries in the Warsaw Pact (Eastern Europe, more or less), were responsible for “only” 188 of the targets, and 9% of the casualties. China and North Korea had only 146 of the targets, but were accountable for 43% of the casualties. Which is to say, each “detonation” in the USSR on average produced around 203,000 casualties on average, each one in Eastern Europe around 176,000, and each one in Asia is over 1 million. That’s kind of bananas.

Now, these use modern (2011) population density figures, not those of 1956. But it’s still a pretty striking result. Why would this be? Partially because the Asian targets seem to be primarily in large cities. Many of the Soviet targets, by contrast, are of pretty isolated areas — remote military airfields in some cases — that only kill a few hundred people. It would make for a very interesting study to really get into the “weeds” of this target plan, and to sort out — systematically — what exactly was being targeted in each location, as best as we can. If we did that, we’d possibly be able to guess at whether an airburst or a surface burst was called for, and potentially even be able to judge target priorities, though the “bomb-as-you-go” method of attack used in the 1950s probably means that even low-priority targets would get nuked early on if they were on a path to a higher-priority one.

Total megatonnage of the US nuclear stockpile — nearly 10 gigatons by 1956, climbing to a peak of over 20 gigatons in 1959. Source: US Department of Energy

Total megatonnage of the US nuclear stockpile — nearly 10 gigatons by 1956, climbing to a peak of over 20 gigatons in 1959. Source: US Department of Energy

What does this exercise tell us? Two things, in my mind. One, this 1956 target list is pretty nuts, especially given the high-yield characteristics of the US nuclear stockpile in 1956. This strikes me as going a bit beyond mere deterrence, the consequence of letting military planners have just a little bit too much freedom in determining what absolutely had to have a nuclear weapon placed on it.

The second is to reiterate how amazing it is that this got declassified in the first place. When I had heard about it originally, I was pretty surprised. The US government usually considered target information to be pretty classified, even when it is kind of obvious (we target Russian nuclear missile silos? You don’t say…). The reason, of course, is that if you can go very closely over a target list, you can “debug” the mind of the nuclear strategist who made it — what they thought was important, what they knew, and what they would do about their knowledge. Though times have changed a lot since 1956, a lot of those assumptions are probably still at least partially valid today, so they tend to keep that sort of thing under wraps. These NUKEMAP “experiments” are quick and cheap approaches to making sense of this new information, and as the creator of the NUKEMAP, let me say that I think “quick and cheap” is meant as a compliment. To analyze something quickly and cheaply is to spark new ideas quickly and cheaply, and you can always subject your new ideas to more careful analytical scrutiny once you’ve had them. I hope that someone in the future will give this target data some real careful attention, because I have no doubt that it still contains many insights and surprises.

  1. Because there has been some confusion about what this list is, I want to clarify a bit here. It is a “Weapons Requirements Study,” which is to say, it’s the way in which the US Air Force Strategic Air Command said, “here are all the things we might want to nuke, if we could.” The might and if we could parts are important, because they are what makes this difference from an actual war plan, which is to say, “what we would actually do in the event of a nuclear war.” The might means that not necessarily all of these targets would have been nuked in any given war situation, but indicates the sorts of things that they considered to be valid targets. The if we could means that this would require more weapons than they could afford to use at the time. In 1956, the US stockpile contained “only” 3,692 warheads. This target list is meant to imply that it needed to be bigger, that is, that by 1959 they would want more weapons to be produced. So by 1959 they had 12,298 weapons — more than three times as many. Why so many weapons for the same number of targets? Because, as noted in the post below, the idea of one-nuke, one-target isn’t how they planned it. Anyway, the long and short of it is, this isn’t exactly the same thing as a war plan, much less for 1956. It may over-count, but it also probably under-counts (because it ignores tactical use, targets of opportunity, the overkill that would occur when targets were multiple-targeted, etc.). But it does give you a flavor of the war planning that was going on, and is probably closer to that than any other document that has been released for this time. As for how that would affect what would have happened in 1956, it’s hard to say, but this is in line with many of the other things we know about nuclear war planning at that time, so I think it is a fair illustration. []
  2. I think my students were probably the most happy that FLI digitized all of this target data because if they hadn’t, I was going to force my undergrads who take my data visualization course to do it in the name of a practical example of what “crowdsourcing” can mean. []
  3. In some cases, OpenWeatherMap did not have information about some of the coordinates. In such cases, the script averaged the missing point from several surrounding points, weighting them by distance. The results it gives in doing this seem plausible enough. For each time I ran it, there were only about two or three missing pieces of data. []
  4. For those who want to look at the dataset themselves, the CSV file that the visualization uses is available here. []

Solzhenitsyn and the Smyth Report

Friday, February 12th, 2016

The Smyth Report is one of the more improbable things to come out of World War II. It is one thing to imagine the United States managing to take nuclear fission, a brand-new scientific discovery announced in 1939, and to have developed two fully-realized industrial-methods of enriching uranium, three industrial-sized nuclear reactors (plus several experimental ones), and three nuclear weapons by the summer of 1945. That improbable enough already, especially since their full-scale work on the project did not begin until late 1942. What really takes it into strange territory is to then imagine that, right after using said superweapon, they published a book explaining how it was made. I can think of no other parallel situation in history, before or since.

The original press release about the Smyth Report, issued only a few days after the Nagasaki bombing. Truman himself personally made the final decision over whether the report should be issued. Source: Manhattan District History Book 1, Volume 4, Chapter 8.

The original press release about the Smyth Report, issued only a few days after the Nagasaki bombing. Truman himself personally made the final decision over whether the report should be issued. Source: Manhattan District History Book 1, Volume 4, Chapter 8.

I have written on the Smyth Report before, talking about the paradoxical mix of motivations that led to its creation: the civilian scientists wanted the American people to have the facts so they could be good citizens in a democracy, while the military wanted something that set the limits of what was allowable speech. Groves and his representatives (namely Henry Smyth and Richard Tolman) devised the first declassification criteria for nuclear weapons in deciding what to allow into the report and what not to. Groves was concerned about secret details, but not the big picture (e.g., which methods of producing fissile material had worked and how they roughly worked), which he thought would be too easy to learn from newspaper accounts. There were those even at the time who criticized this approach, since it is the big picture that might provide the roadmap to a bomb, and the details would emerge to anyone who started on that journey.

The Soviets, in any case, quickly translated the Smyth Report into Russian. The Russian Smyth Report is a very faithful and careful translation. The American physicist Arnold Kramish reviewed it in 1948, and noticed that the Soviets managed to produce a document that showed they were paying very close attention to the original — specifically, that they had multiple editions of the Smyth Report, and noticed differences. The first edition of the Smyth Report was a lithoprint created by the Army, and only around 1,000 copies were printed and released a few days after the bombing of Nagasaki. A spiffed-up edition was published by Princeton University Press, under the title Atomic Energy for Military Purposes, in September 1945. Most of the differences between the two editions are cosmetic, like using full names for scientists instead of initials. In a few places, there are minor additions to the Princeton University Press edition.1

Now you see it, now you don't... comparing the sections on "pile poisoning" in the original lithograph edition of the Smyth Report (top) and the later version published by Princeton University Press (bottom) reveals the omission of a crucial sentence that indicates that this problem was not merely a theoretical one.

Now you see it, now you don’t… comparing the sections on “pile poisoning” in the original lithograph edition of the Smyth Report (top) and the later version published by Princeton University Press (bottom) reveals the omission of a crucial sentence that indicates that this problem was not merely a theoretical one. (Note: the top image is a composite of a paragraph that runs across two pages, which is why the font weight changes in a subtle way.)

But there is at least one instance of the Manhattan Project personnel deciding to remove something from the later edition. The major one noted by Kramish is what was called the “poisoning” problem. In the lithoprint version of the Smyth Report that was released in August 1945, there was a paragraph about a problem they had in the Hanford piles:

Even at the high power level used in the Hanford piles, only a few grams of U-238 and of U-235 are used up per day per million grams of uranium present. Nevertheless the effects of these changes are very important. As the U-235 is becoming depleted, the concentration of plutonium is increasing. Fortunately, plutonium itself is fissionable by thermal neutrons and so tends to counterbalance the decrease of U-235 as far as maintaining the chain reaction is concerned. However, other fission products are being produced also. These consist typically of unstable and relatively unfamiliar nuclei so that it was originally impossible to predict how great an undesirable effect they would have on the multiplication constant. Such deleterious effects are called poisoning. In spite of a great deal of preliminary study of fission products, an unforeseen poisoning effect of this kind very nearly prevents operation of the Hanford piles, as we shall see later.

Reactor “poisoning” refers to the fact that certain fission products created by the fission process can make further fissioning difficult. There are several problematic isotopes for this. There are ways to compensate for the problem (namely, run the reactor at higher power), but it caused some anxiety in the early trials of the B-Reactor. The question of whether to include a reference to this was considered a “borderline” secret by Groves when Smyth was writing the report, but it got added in. Apparently someone had second thoughts after it was released, and so the sentence I’ve put in italics in the quote above was deleted from the Princeton University Press edition. The Russian Smyth Report claimed to be — and shows evidence of — having used the Princeton University Press edition as its main reference. However, that particular sentence about poisoning shows up in the Russian edition, word-for-word.2

"Atomic Energy for Military Purposes," first edition of the Soviet Smyth Report translation made by G.M. Ivanov and published by the State Railway Transportation Publishing House, 1946. Source.

“Atomic Energy for Military Purposes,” first edition of the Soviet Smyth Report translation made by G.M. Ivanov and published by the State Railway Transportation Publishing House, 1946. Source.

Kramish concluded:

I think it is significant in that here we have evidence that at least one Soviet technical man has screened the Smyth Report in great detail and it is very unlikely that some of the references which we have hoped “maybe they won’t notice” have not been noticed. With particular regard to the statement that fission product poisoning very nearly prevents the operation of the Hanford piles, we must realize that that information most certainly has been compromised.3

This serves as a wonderful example of a very common principle in secrecy: if someone notices you trying to keep a secret, you will serve to draw more attention to what you are trying to hide.

But who read the Russian Smyth Report? I mean, other than the people actually participating in the Soviet atomic bomb project. Apparently it was published and available quite widely in the Soviet Union, which is an interesting fact in and of itself. One imagines that the American works that were chosen to be translated into Russian and mass-published must have been pretty selective during the Stalin years; a report about the United State’s atomic energy triumphs made the grade, for whatever reason.

Solzhenitsyn's Gulag mugshot from 1953. Source: Gulag Archipelago, scanned version from

Solzhenitsyn’s Gulag mugshot from 1953. Source: Gulag Archipelago, scanned version from

Which brings me to the event that got me thinking about the Russian Smyth Report again. For the past few years, on and off, I’ve been making my way through the unabridged edition of Aleksandr Solzhenitsyn’s Gulag Archipelago. It’s a long work, and historians take it with a grain of salt (it is not a work of academic history to say the least), but I find it fascinating, at times darkly humorous, at times shocking. Some of the chapters are skimmable (Solzhenitsyn has axes to grind that mean little to me at this point — e.g. against specific Soviet-era prosecutors). But occasionally there are just some really unexpected and surprising little anecdotes. And one of those involves the Smyth Report.

Timofeev-Ressovsky. Source.

Timofeev-Ressovsky. Source.

At one point, Solzhenitsyn talks about his time in the Butyrskaya prison, a “hub” for transferring Gulag prisoners between different camps, albeit one that it was (in Solzhenitsyn’s account) easy to get “stuck” in while they were figuring out what to do with you (and perhaps forgetting about you). Shortly after he arrived, he was approached by “a man who was middle-aged, broad-shouldered yet very skinny, with a slightly aquiline nose.” The man, another prisoner, introduced himself: “[I am] Professor Timofeyev-Ressovsky, President of the Scientific and Technical Society of Cell 75. Our society assembles every day after the morning bread ration, next to the left window. Perhaps you could deliver a scientific report to us? What precisely might it be?” He was none other than the eminent biologist and geneticist Nikolai Timofeev-Ressovsky, a victim of Lysenkoism who had taken up a post in Germany before the rise of the Nazis, been re-captured in the Soviet invasion, and thrown into prison. Timofeev-Ressovsky, though not a name that rolls of the tongue today, was one of the most famous Russian biologists of his time, and one of the world experts on the biological effects of ionizing radiation. And, true to form, he had organized a science seminar in his cell while in Butyrskaya.

Solzhenitsyn continued:

Caught unaware, I stood before him in my long bedraggled overcoat and winter cap (those arrested in winter are foredoomed to go about in winter clothing during the summer too). My fingers had not yet straightened out that morning and were all scratched. What kind of scientific report could I give? And right then I remembered that in camp I had recently held in my hands for two nights the Smyth Report, the official report of the United States Defense Department on the first atom bomb, which had been brought in from outside. The book had been published that spring. Had anyone in the cell seen it? It was a useless question. Of course no one had. And thus it was that fate played its joke, compelling me, in spite of everything, to stray into nuclear physics, the same field in which I had registered on the Gulag card.4

After the rations were issued, the Scientific and Technical Society of Cell 75, consisting of ten or so people, assembled at the left window and I made my report and was accepted into the society. I had forgotten some things, and I could not fully comprehend others, and Timofeyev-Ressovsky, even though he had been in prison for a year and knew nothing of the atom bomb, was able on occasion to fill in the missing parts of my account. An empty cigarette pack was my blackboard, and I held an illegal fragment of pencil lead. Nikolai Vladimirovich took them away from me and sketched and interrupted, commenting with as much self-assurance as if he had been a physicist from the Los Alamos group itself.5

What are the odds of all of this having happened? The Smyth Report itself was pretty improbable. The Soviets deciding to publish it themselves strikes me as unpredictable. That Solzhenitsyn would run across it in a camp seems entirely fortuitous. And finally, that Solzhenitsyn would be the one who would end up explaining it to Timofeyev-Ressovsky, an expert on the radiation effects, seems like a coincidence that a writer would abhor — it’s just too unlikely.

And yet, sometimes history lines up in peculiar ways, does it not? I am sure it never occurred to Smyth, or to Groves, that the report would end up being much-sought-after Gulag reading.

  1. On the publication history of the Smyth Report, see both H.D. Smyth, “The ‘Smyth Report’,” and Datus C. Smith, Jr., “The Publishing History of the ‘Smyth Report,'” both in Princeton University Library Chronicle 37, no. 3 (Spring 1976), 173-190, 191-203, respectively. For a copy of the lithograph version of the report, see the Manhattan District History, Book 1, Vol. 4, Chapter 8, Part 2. A scanned copy of the Princeton University Press edition is available on []
  2. “Несмотря на большое количество предварительных исследований продуктов деления, непредвиденный отравляющий эффект такого рода едва не заставил приостановить работы в Хэнфорде, с чем мы встретимся позднее.” A transcribed copy of the Russian Smyth Report can be found online here.) Cf. Henry D. Smyth, Atomic Energy for Military Purposes (Princeton University Press, 1945), 135, and paragraph 8.15 in the lithograph edition. []
  3. Arnold Kramish to H.A. Fidler, “Russian Smyth Report,” (18 September 1948), in Richard C. Tolman Papers, Caltech Institute Archives, Pasadena, California, Box 5, Folder 4. []
  4. Solzhenitsyn recorded his “occupation” as “nuclear physicist” on his Gulag registration card on a whim, despite knowing nothing about nuclear physics. Elsewhere in the book he refers to nuclear physics as the kind of intellectual “hobby” that one who was not engaged with the world might think about, not realizing the horrors that lurked behind the curtain of Soviet society. The presence of nuclear themes in Solzhenitsyn’s work is probably fodder for a Slavic studies article. []
  5. Aleksandr I. Solzhenitsyn, The Gulag Archipelago 1918-1956: An Experiment in Literary Investigation, I-II, Thomas P. Whitney, trans. (New York: Harper and Row, 1974), 598-599. []

Dogs in space

Friday, June 26th, 2015

Confession: I once told my students something I knew wasn’t true. It was during a lecture on the Space Race, on Sputnik 2, which carried the dog Laika into space in November 1957. I told them about how the Soviets initially said she had lived a week before expiring (it was always intended to be a one-way trip), but that after the USSR had collapsed the Russians admitted that she had died almost immediately because their cooling systems had failed. All true so far.

But then one bright, sensitive sophomore, with a sheen on her eyes and a tremble in her voice, asked, “But did they at least learn something from her death?” And I said, “oh, um, well, uh… yes, yes — they learned a lot.”

Which I knew was false — they learned almost nothing. But what can you do, confronted with someone who is taking in the full reality of the fact that the Soviets sent a dog in space with the full knowledge it would die? It’s a heavy thing to admit that Laika gave her life in vain. (In subsequent classes, whenever I bring up Sputnik, I always preempt this situation by telling the above story, which relieves a little of the pressure.)

A Soviet matchbox with a heroic Laika, the first dog in space. Caption: "First satellite passenger — the dog, Laika." Want it on a shirt, or a really wonderful mug?

A Soviet matchbox with a heroic Laika, the first dog in space. Caption: “First satellite passenger — the dog, Laika.” Want it on a shirt, or a really wonderful mug?

I’m a dog person. I’ve had cats, but really, it’s dogs for me. I just believe that they connect with people on a deeper level than really any other animal. They’ve been bred to do just that, of course, and for a long time. There is evidence of human-dog cohabitation going back tens of thousands of years. (Cats are a lot more recently domesticated… and it shows.) There are many theories about the co-evolution of humans and dogs, and it has been said (in a generalization whose broadness I wince at, but whose message I endorse) that there have been many great civilizations without the wheel, but no great civilizations without the dog.

So I’ve always been kind of attracted to the idea of dogs in space. The “Mutniks,” as they were dubbed by punny American wags, were a key, distinguishing factor about the Soviet space program. And, Laika aside, a lot of them went up and came back down again, providing actually useful information about how organisms make do while in space, and allowing us to have more than just relentlessly sad stories about them. The kitsch factor is high, of course.

A friend of mine gave me a wonderfully quirky and beautiful little book last holiday season, Soviet Space Dogs, written by Olesya Turkina, published by FUEL Design and Publishing. According to its page, the idea for the book was hatched up by a co-founder of the press, who was apparently an aficionado of Mutnikiana (yes, I just invented that word). He collected a huge mass of odd Soviet (and some non-Soviet) pop culture references to the Soviet space dogs, and they commissioned Turkina, a Senior Research Fellow at the State Russian Museum, to write the text to accompany it. We had this book on our coffee table for several months before I decided to give it a spin, and I really enjoyed it — it’s much more than a lot of pretty pictures, though it is that, in spades, too. The narrative doesn’t completely cohere towards the end, and there are aspects of it that have a “translated from Russian” feel (and it was translated), but if you overlook those, it is both a beautiful and insightful book.

Soviet Space Dogs cover

First off, let’s start with the easy question: Why dogs? The American program primarily used apes and monkeys, as they were far better proxies for human physiology than even other mammals. Why didn’t the Soviets? According to one participant in the program, one of the leading scientists had looked into using monkeys, talking with a circus trainer, and found out that monkeys were terribly finicky: the training regimes were harder, they were prone to diseases, they were just harder in general to care for than dogs. “The Americans are welcome to their flying monkeys,” he supposedly said, “we’re more partial to dogs.” And, indeed, when they did use some monkeys later, they found that they were tough — one of them managed to worm his way out of his restraints and disable his telemetric equipment while in flight.

The Soviet dogs were all Moscow strays, picked for their size and their hardiness. The Soviet scientists reasoned that a dog that could survive on the streets was probably inherently tougher than purebred dogs that had only lived a domesticated life. (As the owner of a mutty little rescue dog, I of course am prone to see this as a logical conclusion.)

The Soviet dog program was more extensive than I had realized. Laika was the first in orbit, but she was not the first Soviet dog to be put onto a rocket. Turkina counts at least 29 dogs prior to Laika who were attached to R-1 and R-2 rockets (both direct descendants of the German V-2 rockets), sent up on flights hundreds of miles above the surface of the Earth starting in 1951. An appendix at the back of the book lists some of these dogs and their flights.

Oleg Gazenko, chief of the dog medical program, with Belka (right) and Strelka (left) at a press conference in 1960. Gazenko called this "the proudest moment of his life."

Oleg Gazenko, chief of the dog medical program, with Belka (right) and Strelka (left) at a TASS press conference in 1960. Gazenko called this “the proudest moment of his life.”

Many of them died. Turkina talks of the sorrow and guilt of their handlers, who (naturally) developed close bonds with the animals, and felt personally responsible when something went wrong. Some of the surviving dogs got to live with these handlers when they retired from space service. But when the surviving dogs eventually expired, they would sometimes end up stuffed and in a museum.

I had thought I had heard everything there was to hear about Laika, but I was surprised by how much I learned. Laika wasn’t really meant to be the first dog in space — she was the understudy of another dog who had gotten pregnant just before. Laika’s death was a direct result of political pressures to accelerate the launch before they were ready, in an effort to “Sputnik” the United States once again. The head of the dog medical program, when revealing Laika’s true fate in 2002, remarked that, “Working with animals is a source of suffering to all of us. We treat them like babies who cannot speak. The more time passes, the more I’m sorry about it. We shouldn’t have done it. We did not learn enough from the mission to justify the death of the dog.”

The Soviets did not initially focus on the identity of Laika. Laika was just listed as an experimental animal in the Sputnik 2 satellite. Rather, it was the Western press, specifically American and British journalists, that got interested in the identity, and fate, of the dog. The Soviet officials appear to have been caught by surprise; I can’t help but wonder if they’d had a little less secrecy, and maybe ran this by a few Americans, they’d have realized that of course the American public and press would end up focusing on the dog. It was only after discussion began in the West that Soviet press releases about Laika came out, giving her a name, a story, a narrative. And a fate: they talked about her as a martyr to science, who would be kept alive for a week before being painlessly euthanized.

Staged photo of Belka in a space suit.

Staged photo of Belka in a space suit.

In reality, Laika was already dead. They had, too late, realized that their cooling mechanisms were inadequate and she quickly, painfully expired. The fact that Laika was never meant to come back, Turkina argues, shaped the narrative: Laika had to be turned into a saintly hero, a noble and necessary sacrifice. One sees this very clearly in most of the Soviet depictions of Laika — proud, facing the stars, serious.

The next dogs, Belka and Strelka, came back down again. Belka was in fact an experienced veteran of other rocket flights. But it was Strelka’s first mission. Once again, Belka and Strelka were not meant to be the dogs for that mission: an earlier version of the rocket, kept secret at the time, exploded during launch a few weeks earlier, killing the dogs Lisichka and Chaika. These two dogs were apparently beloved by their handlers, and this was a tough blow. The secrecy of the program, of course, pervades the entire story of the Soviet side of the Space Race, and serves as a marked contrast with the much more public-facing US program (the consequences of which are explored in The Right Stuff, among other places).

When Belka and Strelka came back safely, Turkina argues, they became the first real Soviet “pop stars.” Soviet socialism didn’t really allow valorization of individual people other than Stakhanovite-style exhortations. The achievements of one were the achievements of all, which doesn’t really lend itself to pop culture. But dogs were fair game, which is one reason there is so much Soviet-era Mutnikiana to begin with: you could put Laika, Belka, and Strelka on cigarettes, matches, tea pots, commemorative plates, and so on, and nobody would complain. Plus, Belka and Strelka were cute. They could be trotted out at press conferences, on talk shows, and were the subjects of a million adorable pictures and drawings. When Strelka had puppies, they were cheered as evidence that biological reproduction could survive the rigors of space, and were both shown off and given as prized gifts to Soviet officials. So it’s not just that the Soviet space dogs are cool or cute — they’re also responsible for the development of a “safe” popular culture in a repressive society that didn’t really allow for accessible human heroes. Turkina also argues that Belka and Strelka in particular were seen as paradoxically “humanizing” space. By coming back alive, they fed dreams of an interstellar existence for mankind that were particularly powerful in the Soviet context.

Yuri Gagarin reported to have joked: “Am I the first human in space, or the last dog?” It wasn’t such a stretch — the same satellite that Belka and Strelka rode in could be used for human beings, and gave them no more space. A friend of mine, Slava Gerovitch, has written a lot about the Soviet philosophy of space rocket design, and on the low regard the engineers who ran the program had for human passengers and their propensity for messing things up. Gagarin had about as much control over his satellite as Belka and Strelka did over theirs, because neither were trusted to actually fly a satellite. The contrast between the engineering attitudes of the Soviet Vostok and the American Mercury program is evident when you compare their instrument panels. The Mercury pilots were expected to be able to fly, while poor Gagarin was expected to be flown. 

Soviet Space Dogs is a pretty interesting read. It’s a hard read for a dog lover. But seeing the Soviet space dogs in the context of the broader Soviet Space Race, and seeing them as more than just “biological cargo,” raises them from kitsch and trivia. There is also just something so emblematic of the space age about the idea of putting dogs into satellites — taking a literally pre-historic human technology, one of the earliest and most successful results of millennia of artificial breeding, and putting it atop a space-faring rocket, the most futuristic technology we had at the time.


Leo Szilard, war criminal?

Friday, February 14th, 2014

Could Leo Szilard have been tried as a war criminal? Now, before anyone starts to wonder if this is a misleading or inflammatory headline, let me say up front: this was a question that Szilard himself posed in a 1949 story published in the University of Chicago Law Review titled, “My Trial as a War Criminal.” It is a work of fiction, but Szilard was serious about the questions it raised about the morality of the atomic bomb.1

Szilard testifying before Congress in the postwar. From the Emilio Segrè Visual Archives.

Szilard testifying before Congress in the postwar. From the Emilio Segrè Visual Archives.

Leo Szilard is one of the most colorful characters in the story of how the atomic bomb got made. An eccentric Hungarian, one of the “Martians” who emigrated to the United States during World War II, Szilard aspired to always being one step of head of the times. You didn’t have to be much ahead to make a difference, he argued, just a little bit. One example of this he gave in a later interview regards his decision to flee Germany shortly after the Reichstag fire. On the day he left, it was an easy trip on an empty train. The next day, the Germans cracked down on those trying to flee. “This just goes to show that if you want to succeed in this world you don’t have to be much cleverer than other people, you just have to be one day earlier than most people. This is all that it takes.”2 In 1939, Szilard was the one who famously got Albert Einstein to write to President Roosevelt, launching the first US government coordination and funding of fission research. During the Manhattan Project itself, Szilard worked at the University of Chicago, helping to develop the first nuclear reactor (CP-1) with Enrico Fermi. After this, though, his active role in the bomb project declined, because General Groves hated the man and worked to exclude him. He attempted in various ways to influence high-level policy regarding the bomb, but was always shut out.

But after the war, Szilard found his place — as a gadfly. He wasn’t a great bomb developer. He was, however, a great spokesman for the dangers of the atomic bomb. Irrepressible, clever, and impossible-to-look-away-from, Szilard could steal the stage, even if no American could pronounce his name. It is in this context that his article, “My Trial as a War Criminal,” was written. The notes on the University of Chicago Law Review version note that it was written in June 1948, but because of “political tensions” Szilard put it off. With the “relaxation” of tensions, Szilard deemed it possible to publish in the Autumn 1949 issue. One wonders exactly what Szilard had in mind; in any case, given that the US first detected the Soviet atomic bomb in September 1949, and from there launched into the acrimonious debate over the hydrogen bomb, it seems like Szilard’s sense of timing in this instance was either perfect or terrible.

Szilard - My Trial as a War Criminal

My Trial as a War Criminal” starts right after World War III has been fought. The Soviet Union has won, after using a new form of biological warfare against the United States.

I was just about to lock the door of my hotel room and go to bed when there was a knock on the door and there stood a Russian officer and a young Russian civilian. I had expected something of this sort ever since the President signed the terms of unconditional surrender and the Russians landed a token occupation force in New York. The officer handed me something that looked like a warrant and said that I was under arrest as a war criminal on the basis of my activities during the Second World War in connection with the atomic bomb. There was a car waiting outside and they told me that they were going to take me to the Brookhaven National Laboratory on Long Island. Apparently, they were rounding up all the scientists who had ever worked in the field of atomic energy. 

In the story, Szilard was given a choice: he could stand trial for being a war criminal, or he could go to Russia and work with them over there. Szilard opted for the former, claiming he had no capability to learn Russian at that point in his life, and that he had no interest in making himself a servant of Soviet science. He is then interrogated at length about his political views and his work on atomic energy. The Soviets have read his articles in the Bulletin of the Atomic Scientists (“Calling for a Crusade” and “Letter to Stalin“) but think they are naive. Szilard reports no real acrimony, however.

His trial for war crimes begins a month later in Lake Success, New York. He was, “apparently as a special favor,” one of the first to be tried. Two major charges were levied against him. The first was that he had tried to push the United States towards developing nuclear weapons in 1939 (the Einstein-Szilard letter). In the eyes of the prosecutor, this was when World War II was still “an imperialist war, since Germany had not attacked Russia until 1941.” The second charge was that he contributed “to the war crime of dropping an atomic bomb on Hiroshima.”

Szilard has several defensive arguments in his favor. First, he points out that he in fact presented a memorandum to (future) Secretary of State James Byrnes in May 1945 which argued that the atomic bomb should not be first used against Japan cities. This memo had been published in the Bulletin as well in December 1947. Second, he also noted that he circulated a petition in July 1945 that called for not using the bomb as a military weapon before giving the Japanese a chance to surrender first, and that he attempted to put it in front of President Truman himself.

Leo Szilard at the University of Chicago in 1954. Source.

Leo Szilard at the University of Chicago in 1954. Source.

Both of these defenses, however, were easily countered. In the case of the memo to Byrnes, an original copy could not be found, and the Bulletin copy had many deletions for security reasons, any one of which could have contradicted the published material. In the case of the petition to Truman, it was noted that it never made it to Truman, because Szilard submitted it by way of General Groves, who of course squashed it. The Russian prosecutor said that Szilard should have known that the architect of the Manhattan Project would never have transmitted such a thing up the chain of command. So neither were considered adequate at exculpating Szilard.

Szilard is then released on bail. The rest of the story concerns the trials of Secretary of War Stimson, Secretary of State Byrnes, and President Truman. This part revolves around a legal discussion of what it means to be a “war crime.” In the story, the tribunal adopts the definition used at Nuremberg that a war crime was any “violations of the customs of war” and “planning a war in violation of international agreements.” The use of the atomic bombs was necessarily a violation of the customs of war, because it was not customary to drop atomic bombs on other nations during World War II. And the Russian prosecutor was able to gather ample evidence that various US officials had urged war with the Soviet Union under conditions not allowed by the United Nations charter, which only allows war in the face of armed attack. So when Byrnes wrote in a book that the United States should consider “measures of last resort” if the Soviets refuse to leave East Germany, this was taken as evidence of the latter charge. (Refusing the leave occupied territory is not an “armed attack,” and “measures of last resort” can only be understood as implying war.)

Stimson’s section gets the closest to the meat of the question — whether the atomic bombs were justified. Stimson’s defense is the same as his 1947 article from Harper’s — that the bombs were used to hasten the war and to save a net number of lives. The Russians point out, however, that even the US Strategic Bombing Survey concluded that the atomic bombs were not necessary to end the war,3 and that Stimson had access to sufficient intelligence about Japanese communications to know that Japan was on its last legs.

Szilard receives notice — in his bathrobe — that he has won the "Atoms for Peace" award in 1960. Source.

Szilard receives notice that he has won the “Atoms for Peace” award in 1960. At the time, he was in a hospital, being treated (successful) for bladder cancer. Source.

In the end, Szilard notes that practically all of them were expected to be found guilty. But a deus ex machina saves the day — the Soviets’ viral biological agents somehow get out to their own populations, their vaccines fail, and the United States is desperately appealed to for assistance. Under new settlement terms, all war crime prosecutions were ended, and “all of us who had been on trial for our lives were greatly relieved.”

Such ends Szilard’s story. It’s a curious one, and doesn’t go where you might think based on the title alone. Szilard seems to be making a strong point about the way in which war crime tribunals always favor the winners, and that if you apply the Nuremberg standards to the United States’ conduct during World War II and the early postwar, it is clear that no one, even a dissident like Szilard, would be safe. It isn’t a hand-wringing, self-flagellating confession. There is none of the “physicists have known sin” moralizing of J. Robert Oppenheimer. It isn’t even a discussion of what happened regarding the atomic bombing, whether it was justified or not, whether it was terrible or not. It is a gentle story, albeit one that subtly introduces a revisionist argument about the bombings of Hiroshima and Nagasaki, one that continues to be debated to this day.

One can also read the piece as being instead a complaint about the definition of “war crimes” from Nuremberg — are they nothing more than using new weapons and talking about war? The actual Nuremberg principles, also include “wanton destruction of cities, towns, or villages, or devastation not justified by military necessity.” Now whether the atomic bombings fall under that is a tricky question — how does one define “justified by military necessity”? On this sort of unclear requirement, the whole edifice hinges.4

Szilard glasses 1960 LIFE

This whole story came to my attention because Bill Lanouette, author of the Szilard biography Genius in the Shadowse-mailed me after seeing my post on Andrei Sakharov. He noted that according to Rhodes’ Dark Sun, Sakharov was very affected by Szilard’s story. Sakharov showed it to his colleague Victor Adamsky, who reported that:

A number of us discussed it. It was about a war between the USSR and the USA, a very devastating one, which brought victory to the USSR. Szilard and a number of other physicists are put under arrest and then face the court as war criminals for having created weapons of mass destruction. Neither they nor their lawyers could make up a cogent proof of their innocence. We were amazed by this paradox. You can’t get away from the fact that we were developing weapons of mass destruction. We thought it was necessary. Such was our inner conviction. But still the moral aspect of it would not let Andrei Dmitrievich and some of us live in peace.5

What’s interesting to me is that the Soviet weapon designers seem to have read Szilard’s story in a much more moralistic light than I did. For me, Szilard’s story is more about the difficulty of having anything like a consistent stand on what “war crimes” might be — that the actions of the United States could easily be seen from another nation’s perspective as highly damning, even if from a more sympathetic position they might be justifiable. Sakharov and Adamsky apparently understood the story to be about the indefensibility of working on weapons of mass destruction full-stop. It is a curious divergence. Assuming my reading is not naive, I might suggest that the Soviet scientists saw not so much what they wanted to see, but what confirmed their existing, latent fears — something in Szilard’s story resonated with something that they already had inside of them, waiting to be released.

  1. Leo Szilard, “My Trial as a War Criminal,” University of Chicago Law Review 17, no. 1 (Autumn 1949), 79-86. It was later reprinted in Szilard’s book of short stories, The Voice of Dolphins. []
  2. Spencer Weart and Gertrude Weiss Szilard, eds., Leo Szilard: His version of the facts; Selected recollections and correspondence (Cambridge, Mass.: MIT Press, 1978), 14. []
  3. “Based on a detailed investigation of all the facts, and supported by the testimony of the surviving Japanese leaders involved, it is the Survey’s opinion that certainly prior to 31 December 1945, and in all probability prior to 1 November 1945, Japan would have surrendered even if the atomic bombs had not been dropped, even if Russia had not entered the war, and even if no invasion had been planned or contemplated.” []
  4. Szilard’s story also notes that just because these principles were developed after the war ended did not prohibit them from being applied to activities during the war — otherwise all of the Germans would have gotten off the hook. []
  5. Richard Rhodes, Dark sun: The making of the hydrogen bomb (Simon & Schuster, 1995), 582. []

Sakharov’s turning point: The first Soviet H-bomb test

Friday, January 31st, 2014

The Soviets set off their first megaton-range hydrogen bomb in November 1955. It was the culmination of many years of effort, in trying to figure out how to use the power of nuclear fission to release the power of nuclear fusion in ways that could be scaled up arbitrarily.1 The Soviet bomb was designed to be a 3-megaton warhead, but they set it off at half strength to avoid too much difficulty and fallout contamination. Unlike the US, the Soviets tested their version version by dropping it out of a bomber — it was not a big, bulky, prototype like the Ivy Mike device. But it was not an uneventful test. The details are little talked about, but it serves as an impressive parable about what can go wrong when you are dealing with science on a big scale.

Andrei Sakharov, from nuclear weapons designer to aged dissident.

Andrei Sakharov, from young nuclear weapons designer to aged dissident. Source.

Andrei Sakharov has a stunning chapter on it in his memoirs. It makes for an impressive story in its own right, but Sakharov also identifies the experience as a transformative one in his own thinking about the responsibility of the scientist, as he made his way from nuclear weapons designer to political dissident.2

Sakaharov starts out by talking about going to Kazakhstan to see the test. He had by this time been assigned two armed KGB officers, known euphemistically as “secretaries,” whose jobs were to act as bodyguards and “to prevent undesirable contacts.” Sakharov claims not to be have been too bothered by them. They lived next door.

The test of the device, code-named RDS-37, was to be the 24th Soviet nuclear test, and was the largest ever tested at the Semipalatinsk test site. This created several logistical difficulties. In order to avoid local nuclear fallout, it was going to be an airburst. The size of the bomb, however, brought up the possibility that it might accidentally blow the bomber that delivered it out of the sky. To avoid this, the bomber was painted white (to reflect the thermal radiation), and a big parachute was applied to the bomb so that the bomber could get away fast enough. Sakharov was satisfied enough with the math on this that he asked if he could ride along on the bomber, but the request was denied.

Sakharov’s account lingers on the incongruity between testing nuclear weapons in beautiful, wild places. Siberia was “a new and spellbinding experience for me, a majestic, amazingly beautiful sight.” He continued: “The dark, turbulent waters of the Irtysh, dotted with a thousand whirlpools, bore the milky-blue ice floes northward, twisting them around and crashing them together. I could have watched for hours on end until my eyes ached and my head spun. Nature was displaying its might: compared to it, all man’s handiwork seems paltry imitation.

The RDS-37 test device. Source.

The RDS-37 test device. Source.

A test trial-run on November 18th went smoothly, but the first test attempt, on November 20th, did not. As David Holloway recounts in Stalin and the Bomb, that same Siberian wintery majesty that dazzled Sakharov made for difficult testing conditions.3 The fully-loaded Tu-16 bomber had to abort when the test site was unexpectedly covered by clouds, making them unable to see the target aiming point and rendering the optical diagnostic systems inoperable. The plane was ordered to land, only now it had a fully-armed experiment H-bomb on board. There was concern that if it crashed, it could result in a nuclear yield… destroying the airfield and a nearby town. The airfield had meanwhile iced over. Igor Kurchatov, the lead Soviet nuclear weapons scientist, drove out to the airfield himself personally to see the airfield. Sakharov assured him that even if it crashed, the odds of a nuclear yield were low. An army unit at the airfield quickly worked to clear the runway, and so Kurchatov ordered the plane to land. It did so successfully. Kurchatov met the crew on the field, no doubt relieved. Sakharov recalls him saying, “One more test like [this one] and I’m retiring.” As for Sakharov, he called it “a very long day.”

Two days later, they gave it another go. This time the weather cooperated, as much as Siberian weather cooperates. The only strange thing was a temperature inversion, which is to say, at higher altitudes it was warmer than at lower altitudes, the opposite of the usual. The meteorologists gave the go-ahead for the testing.

Sakharov stayed at a laboratory building on the outskirts of a small town near the test site. An hour before the test, Sakharov saw the bomber rising above the town. It was “dazzling white,” and “with its sweptback wings and slender fuselage extending far forward, it looked like a sinister predator poised to strike.” He recalled that “for many peoples, the color white symbolizes death.” An hour later, a loud-speaker began the countdown.

The white bomber. Source.

The white bomber. Source.

Sakharov described the test in vivid detail:

This time, having studied the Americans’ Black Book4, I did not put on dark goggles: if you remove them after the explosion, your eyes take time to adjust to the glare; if you keep them on, you can’t see much through the dark lenses. Instead, I stood with my back to ground zero and turned around quickly when the building and horizon were illuminated by the flash. I saw a blinding, yellow-white sphere swiftly expand, turn orange in a fraction of a second, then turn bright red and touch the horizon, flattening out at its base. Soon everything was obscured by rising dust which formed an enormous, swirling grey-blue cloud, its surface streaked with fiery crimson flashes. Between the cloud and the swirling durst grew a mushroom stem, even thicker than the one that had formed during the first [1953] thermonuclear test. Shock waves crisscrossed the sky, emitting sporadic milky-white cones and adding to the mushroom image. I felt heat like that from an open furnace on my face — and this was in freezing weather, tens of miles from ground zero. The whole magical spectacle unfolded in complete silence. Several minutes passed, and then all of the sudden the shock wave was coming at us, approaching swiftly, flattening the feather-grass.

“Jump!” I shouted as I leaped from the platform. Everyone followed my example except for my bodyguard (the younger one was on duty that day); he evidently felt he would be abandoning his post if he jumped. The shock wave blasted our ears and battered our bodies, but all of us remained on our feet except for the bodyguard on the platform, who fell and suffered minor bruises. The wave continued on its way, and we heard the crash of broken glass. Zeldovich raced over to me, shouting: “It worked! It worked! Everything worked!” Then he threw his arms around me. […]

The test crowned years of effort. It opened the way for a whole range of devices with remarkable capabilities, although we still sometimes encountered unexpected difficulties in producing them.

But they soon learned that a bruised bodyguard was the least of the injuries sustained in the test. Scientists and soldiers had been stationed far closer to the blast than Sakharov was. The scientists were fine — they were lying flat on the ground and the blast wave caused them no injury. One of them lost his cool and ran away from the blast, but he was only knocked down by it. But a nearby trench held a platoon of soldiers, and the trench collapsed. One young soldier, in his first year of service, was killed.

RDS-37 detonation

RDS-37, detonating. This is considerably sped up; it shows about 50 seconds of footage compressed into only a few seconds. Video source here.

There was also a nearby settlement of civilians affected by the blast wave. In theory it was at a distance remote enough to avoid anything serious; this had been calculated. But the aforementioned inversion layer reflected the shock wave back down to Earth with unusual vehemence — underscoring how even a little misunderstanding of the physics can translate into real problems when you are talking about millions of tons of TNT (something learned by the US a year earlier, at the Castle Bravo test). The inhabitants of the town were in a primitive bomb shelter. After the flash, they exited to see the cloud. Inside the shelter, however, was left a two-year-old girl, playing with blocks. The shock wave, arriving well after the flash, collapsed the shelter, killing the child. 

The ceiling of a woman’s ward of a hospital in another nearby village collapsed, seriously injuring many people. Glass windows broke at a meat-packing plant a hundred miles from the test site, sprinkling ground beef with splinters. Windows broke throughout the town where Sakharov was stationed.

RDS-37, seen from a local town. Also sped up. Same source as the previous.

The consequences of an explosion are hard to predict,” Sakharov concluded.

Had we been more experienced, the temperature inversion would have caused us to delay the test. The velocity of the shock wave increases as the temperature does: if the air temperature rises with altitude, the shock wave bends back towards the ground and does not dissipate as fast under normal conditions. This was the reason the shock wave’s force exceeded our predictions. Casualties might have been avoided if the test had been conducted as scheduled on November 20, when there was no temperature inversion.

As with Castle Bravo, there was a grim, almost literary connection between technical success and human disaster. They had shown the way forward for deployable, multi-megaton hydrogen bombs, but with a real cost — and that cost only an insignificant hint of what would happen if the weapons were used in war. Sakharov concluded:

We were stirred up, but not just with the exhilaration that comes with a job well done. For my part, I experienced a range of contradictory sentiments, perhaps chief among them a fear that this newly released force could slip out of control and lead to unimaginable disasters. The accident reports, and especially the deaths of the little girl and the soldier, heightened my sense of foreboding. I did not hold myself personally responsible for their deaths, but I could not escape a feeling of complicity.

That night, the scientists, the politicians, and the military men dined well. Brandy was poured. Sakharov was asked to give the first toast. “May all of our devices explode as successfully as today’s, but always over test sites and never over cities.”

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

The immediate response was silence. Such things were not to be said. One of the military higher-ups flashed a crooked grin, and stood to give his own toast. “Let me tell a parable. An old man wearing only a shirt was praying before an icon. ‘Guide me, harden me. Guide me, harden me.’ His wife, who was lying on the stove, said: ‘Just pray to be hard, old man, I can guide it myself.’ Let’s drink to getting hard.

Sakharov blanched at the crudity (“half lewd, half blasphemous”), and its serious implications. “The point of his story,” he later wrote, “was clear enough. We, the inventors, scientists, engineers, and craftsmen, had created a terrible weapon, the most terrible weapon in human history; but its use would lie entirely outside our control. The people at the top of the Party and military hierarchy would make the decisions. Of course, I knew this already — I wasn’t that naive. But understanding something in an abstract way is different from feeling it with your whole being, like the reality of life and death. The ideas and emotions kindled at that moment have not diminished to this day, and they completely altered my thinking.

  1. The Soviets tested their first thermonuclear bomb in 1953, the RDS-6s, which used fusion reactions. But it was not a true, multi-megaton capable hydrogen bomb. The 1953 device was “just” a very, very big boosted bomb, where 40 kilotons of fissioning produced 80 kilotons of fusioning which in turn produced another 280 kilotons of fissioning, for 400 kilotons total. The design could not be scaled up arbitrarily, though, and it did not use radiation implosion (like the Teller-Ulam design, known in the USSR as the “Third Idea.” It was a big bomb, but the 1955 test was the design that became the basis for their future nuclear warheads. []
  2. Andrei Sakharov, Memoirs, trans. Richard Lourie (New York: Knopf, 1990), 188-196. []
  3. David Holloway, Stalin and the bomb: The Soviet Union and atomic energy, 1939- 1956 (New Haven: Yale University Press, 1994), 314-316. []
  4. From elsewhere in the Memoirs, it seems that Sakharov may be referring here to the 1950 edition of Samuel Glasstone’s The Effects of Atomic Weapons. There was a hardcover edition that apparently had a black cover. Sakharov notes that the nick-name only “partly” came from the cover; he implies that the contents are “black” as well. However there is nothing about goggles or glare in the version of the text I have, so maybe it is something different. []