Posts Tagged ‘Vannevar Bush’

Redactions

The Smyth Report: A chemical weapon coverup?

Tuesday, May 2nd, 2017

Two weeks ago, The Atlantic published an article on its website that made an interesting and provocative claim about the history of the atomic bomb. The thesis, in short, is that the Manhattan Project officials deliberately misconstrued their own history to avoid the general public thinking that the atomic bomb had effects similar to the reviled and banned gas warfare of World War I. If true, that would be rather remarkable: while it is clear that the Manhattan Project personnel did care very much about their own history and how it would affect how people thought about the atomic bomb, an association with chemical weapons has not traditionally been hypothesized as one of the several motivations for this.

"Atomic Bombs," the original name for the Smyth Report, was meant to be applied with a red stamp. But in the hurry to release it, this was forgotten, and its terrible subtitle became its actual title, hence everyone calling it "the Smyth Report." It was, in other words, a report so secret that it forgot its own title! The only version with the red stamp applied was the one deposited for copyright purposes at the Library of Congress.

The author, Jimena Canales, is a professional historian of science who I’ve known for a long time. I’ve been asked about the article several times by other scholars who wanted to know whether the thesis was plausible or not. What’s tricky is that most people don’t know enough about the history of Manhattan Project publicity to sort out what’s new from what’s old, and what’s plausible from what’s not. Ultimately there are many parts of this article which are correct, but are not new (as Canales acknowledges in her article); the parts that are novel are, in my view, not likely to be true.

Canales’ article is about the creation of the Smyth Report. The argument is, essentially, that the Smyth Report is overly focused on physics at the expense of chemistry (which is the correct but not new argument), and that the reason it is focused on physics is so that people wouldn’t associate the atomic bomb with chemical weapons (which is the new but I think not correct argument). My problem with the piece is really the last part of it: I just don’t think there’s any evidence that this was a real concern at the time of writing the Smyth Report, and I don’t think it’s necessary to posit this as a reason for the way the report turned out the way it did (there are other reasons).

Those who have read this blog for a while probably know that I find the Smyth Report fairly fascinating and have written about it several times. It’s a highly unusual document that sits at several intersections: it hovers between secrecy and openness, it hovers between the end of the Manhattan Project and the beginning of the postwar era. In the remainder of this overly-long blog post, I am going to lay out a thumbnail sketch of the history of the Smyth Report as I understand it, what the key historiographical issues are, and why I disagree with the ultimate conclusions of Canales' piece.

Read the full post »

Redactions

FDR and the bomb

Friday, September 30th, 2016

Franklin D. Roosevelt is one of the most enigmatic figures of the early American atomic bomb program. The four-term US president always features briefly in any story of the Manhattan Project: first, for his creation of the Advisory Committee on Uranium, an exploratory research effort in response to a letter urging government action that was sent by Albert Einstein in August 1939; second, for his approval of a broader expansion of that research into a "pilot" program in late 1941, just before the US entry into World War II, which resulted in more intensive investment into uranium enrichment and reactor design; and third, in mid-1942, Roosevelt approved bringing in the US Army Corps of Engineers to manage a full-scale bomb-production project. This latter action is often subsumed by the attention given the first two, but it is the production program decision that actually resulted in the US getting an atomic bomb by 1945, and is the decision that makes the United States unique among powers in the Second World War, as while several powers had research programs, only the US turned it into a production program. It was the beginning of the Manhattan Project as we tend to characterize it, the kind of program that produces weapons and not just data.

A little history trick I always tell my students: if you see Truman and FDR in the same photograph, that means Truman doesn't know about the atomic bomb. Photo source: History.com

A little history trick I always tell my students: if you see Truman and FDR in the same photograph, that means Truman doesn't know about the atomic bomb. Photo source: History.com

So Roosevelt looms large, as he ought to. Without Roosevelt's actions, there would have been no atomic bomb in World War II. And yet... What did FDR really think about the atomic bomb? Did he see it as a true end-the-war weapon? Did he think it was meant to be used in war (as a first-strike weapon) or did he think of it primarily as a deterrent (i.e., against the Germans)? The question isn't just an idle one, because Roosevelt's sudden death, on April 12, 1945, left his successor, Harry Truman, with major decisions to make about the future of the war, and Truman, in part, thought he was acting in accordance with FDR's wishes on this matter. But, as is well known, FDR never told Truman about the atomic bomb work, and never set out his wishes on this matter — so there was a tremendous amount of assumption involved.

I get asked about FDR's views on a fairly regular basis, and it's one of those wonderful questions that seems simple but is really quite complex, and quickly gets you into what I think of as "epistemological territory": How do we know what someone's views were, in the past? How do we get inside the head of someone dead? Well, you might say, obviously we can't completely get inside someone's head (we can barely get inside the heads of people who are alive and in front of us, and a Freudian might argue that we barely have conscious access to our own motivations and thoughts), but we can look at what evidence there is that was written down that might reveal some of their inner thoughts.

But with FDR, this is very tricky: he didn't write that much down. He didn't keep a diary or journal. He didn't send that many letters. He didn't record phone calls, conversations, write "memos to self," or any of the other documenting habits that are common to major political figures. He was notoriously secretive and private. He didn't explain himself. If Truman was comparatively straightforward in his thinking and action, Roosevelt was a grand schemer, trying to out-wit and out-charm the world (sometimes successfully, sometimes not). He could be downright gnomic. At one point, Vannevar Bush (FDR's top science advisor) asked Roosevelt whether the Secretary of the Navy ought to be included in discussions on the bomb project. He later recalled that FDR "looked at me with one of his strange smiles and said, 'No, I guess not, not now.'" End of anecdote, no real indication as to what FDR was thinking, other than a "strange smile" that no doubt concealed much.1

What approval of a nuclear weapons program looked like under Roosevelt: "VB OK FDR." Report by Vannevar Bush of June 16, 1942, asking to expand the fission work into an all-out effort.

What approval of a nuclear weapons program looked like under Roosevelt: "VB OK FDR." Report by Vannevar Bush of June 16, 1942, asking to expand the fission work into an all-out effort.

As this example indicates, we do sometimes have accounts, including contemporary ones, by people who met with Roosevelt and talked with him. But even these can be quite tricky, because FDR did not, again, generally explain his full thinking. So people like Bush were left with half-versions of the story, knowing what FDR said but not what he thought, and while this is, to be sure, a common-enough human experience, with FDR the gap between thought and expression was exceptionally large.

Separately, there is another, related issue that complicates our understanding: people who met with FDR would often use tales of his agreement as a form of authority. Vannevar Bush did this repeatedly, and this is no doubt a pretty standard mode of operation regarding advisors and presidents. Bush would go to FDR with an idea, convince FDR to sign off on Bush's idea, and then claim it was FDR's idea, because while people might feel free to disagree with Bush, they couldn't really disagree with FDR. One of the most famous examples of this is Bush's report on postwar American science policy, Science—The Endless Frontier, which is constructed to look like it is a reply to a letter by FDR for guidance, but was entirely engineered by Bush as a means of pushing his own agenda, with FDR being a complicit as opposed to a driving force.2

So what do we know? The number of documents that give insight into FDR's personal thoughts about the atomic bomb — what it was, what it could be used for, what his plans were — are very slim. Some of this is a function of timing: FDR died right around when they were getting concrete estimates for when the atomic bomb would be ready to use, and had he lived until, say, May 1945, he might have been faced with more direct questions about his plans for it. (The first Target Committee meeting was on April 27, and the Interim Committee was created in early May, just to give an indication of how things rapidly started to come together right after FDR died.) So he wasn't part of the conversations that directly led to the use of the atomic bombs on Japanese cities.

But there are a few other documents that are useful in assessing FDR's views. It seems fairly clear that FDR's approval of the Uranium Committee in 1939 was initially because he was interested in the deterrent quality of the bomb. Alexander Sachs, who had the meeting with Roosevelt, related that FDR had confirmed that the goal was "to see that the Nazis don't blow us up."3 Again, this wasn't yet a bomb-making program, it was just a "see if bombs are worth worrying about" program, but that's still a little insight: it shows, perhaps, that the initial, explicit attraction was not in making a new wonder-weapon, but deterring against another one.

Roosevelt, Truman, and FDR's previous VP, Henry Wallace. Truman is the only one here who doesn't know about the bomb program. Image source: Truman Library via Wikimedia Commons

Roosevelt, Truman, and FDR's previous VP, Henry Wallace. Truman is the only one here who doesn't know about the bomb program. Image source: Truman Library via Wikimedia Commons

Between 1939 and 1941 there are big gaps in anything that would indicate FDR's views on the bomb. This is not surprising, because this was a period of relative lack of movement in the US fission program, which was not yet a bomb program. FDR was occasionally involved in discussions about the program, but there was no "bomb" yet to worry about one way or the other. In late 1941, FDR approved accelerating and expanding the research, at the urging of Bush, James Conant, Ernest Lawrence, and Arthur Compton, and in mid-1942 he approved of a full bomb production program, as previously noted. None of these documents indicate intent for use, however. The June 1942 report by Vannevar Bush and James Conant, whose approval by Roosevelt is indicated only by a scrawled "VB OK FDR" on its cover letter, indicates that a weapon made with 5-10 kilograms of U-235 or Pu-239 (then just called "Element 94") would have an explosive power of "several thousand tons of TNT." It goes into great detail on the types of plants to be constructed and the organization of the research. It predicts a "bomb" would be ready by early 1944. But at no point does it indicate what the point of such a weapon was: as a deterrent, as a first-strike weapon, as a demonstration device, etc. There is only point, towards the end, which suggests that a committee be eventually formed to consider "the military uses of the material," but even this is primarily concerned with research and development for the plants. This is not to say that Bush, Conant, et al. did not have their views on whether it would be a weapon to use or not — but the report does not indicate any such views, and so FDR's endorsement of it doesn't tell us much.4

Bush met with Roosevelt many times during the war, and sometimes would write down, afterwards, what they talked about. Clearly this is FDR-as-filtered-through-Bush, but we'll take what we can get. In late June 1943, Bush wrote to Conant with an account of a recent meeting he had with FDR on "S-1," their code for the bomb work. In it, Bush related that FDR was curious about the progress of the work and the schedule for having a bomb. Bush told him things were going well but still tentative, and that the date of a bomb had been pushed back to early January 1945, but that this could shift in either direction. FDR also wanted to know how the Germans were doing. Bush explained that they didn't really know, that they were trying to find ways to slow down any German work, and that they were still worried about being behind the Germans. (They would eventually come to understand they had surpassed them.) Then there is this really interesting passage which is worth quoting from the original:

He [FDR] then himself discussed what the enemy attitude of mind would be if they felt they had this coming along, and were inclined to remain on the defensive until it could eventuate. We then spoke briefly of the possible use against Japan, or the Japanese fleet, and I brought out, or I tried to, that because at this point I do not think I was really successful in getting the idea across, that our point of view or our emphasis on the program would shift if we had in mind use against Japan as compared with use against Germany.5

After which the conversation then shifted to other matters. Such a tantalizing snippet of discussion, but not as fleshed out as one might want! What did Bush and FDR understand the difference to be between the Japanese versus the Germans? Who initially brought up the possibility of use against the Japanese? What did FDR think about the German "attitude of mind"? This snippet hints at exactly the topics one might care about but doesn't actually reveal anything about FDR's views on them! Impressively frustrating!

Most of FDR's interactions with Bush, Groves, and others during this period concerned diplomatic issues, specifically cooperation with the British (a rather long, drawn-out saga), and even a meeting with Niels Bohr (from which FDR mostly took away a fear that Bohr might alert the Soviets, or others, to the US work). FDR helped, for example, in helping to shut down unionization activities at the Berkeley Radiation Laboratory, and was kept abreast of efforts made to monopolize global uranium ore resources. He was not "checked out" in any respect; he was dramatically more concerned with the ins-and-outs of the fission work than, say, Truman would later be. But again, very little of this left any record about what he thought they were going to do with the bomb.6

Atomic diplomacy: Roosevelt and Churchill at Quebec, in September 1944. Source: NARA via Wikimedia Commons

Atomic diplomacy: Roosevelt and Churchill at Quebec, in September 1944. Source: NARA via Wikimedia Commons

Two of the only documents that reveal any FDR-specific thoughts about the use of the bomb were agreements he made with Winston Churchill. In August 1943, Churchill and Roosevelt met in Quebec, Canada, and hammered out the secret "Quebec Agreement." It said, among other matters, that the US and UK would pool their efforts at both making the bomb and securing global uranium reserves, that they would never nuke each other, that they would never nuke anyone else without mutual agreement, and they would not reveal the secrets of the bombs without mutual agreement. So this at least provides a framework for using the bomb, but it is a limited one — FDR was willing to deliberately tie the US's hands with regards to dropping of the atomic bomb to the approval of a foreign power, quite an amazing concession!7

Another meeting between Roosevelt and Churchill, in Hyde Park, New York, produced yet another fascinating agreement. The Hyde Park Aide-Mémoire of September 1944 contained the following clause:

The suggestion that the world should be informed regarding tube alloys, with a view to an international agreement regarding its control and use, is not accepted. The matter should continue to be regarded as of the utmost secrecy; but when a “bomb” is finally available, it might perhaps, after mature consideration, be used against the Japanese, who should be warned that this bombardment will be repeated until they surrender.

Here they were explicitly rejecting the appeal by Niels Bohr (which he was able to make personally to both FDR and Churchill, on separate occasions) to alert the world about the atomic bomb. But it is of interest that they were, at this point, specifically thinking about using the bomb against the Japanese (not Germany), but that they thought it would require "mature consideration" before use, and that they were putting "bomb" in scare-quotes. This is one of the few indications we have of FDR's awareness and acceptance of the idea that the bomb might be used as a first-strike weapon, and against the Japanese in particular.

Lastly, there is one other significant FDR-specific datapoint, which I have written about at length before. In late December 1944, with Yalta looming, Roosevelt and Groves met in the Oval Office (along with Henry Stimson, the Secretary of War). In Groves' much later recollection (so we can make of that what we will), Roosevelt asked if the atomic bomb might be ready to use against Germany very soon. Groves explained that for a variety of reasons, the most important one being that their schedule had pushed the bomb back to the summer of 1945, this would not be possible. It is an interesting piece, one that simultaneously reveals Roosevelt's potential willingness to use the atomic bomb as a first-strike weapon, his willingness to use it against Germany specifically, and the fact that FDR was sufficiently out of the loop on planning discussions to not know that this would both be impossible and very difficult. In other words, it reveals that FDR wasn't aware that by that point, it was expected that the bomb could only be used against Japan, and that is a rather large thing for him not to know — further evidence, perhaps, that he was not completely abreast of these kinds of discussions. At the meeting, Groves gave FDR a report that predicted a weapon ready for use in early August 1945, and specified that it was time to begin military planning, which Groves annotated as having been "approved" by the Secretary of War and the President. But there doesn't seem to have been any specifics of targets, or even targeting philosophy, agreed upon at this point.8

What can we make of all this? Frequently I have seen people take the position that Truman himself took: assuming that Roosevelt would have used the bomb in the way that Truman did, because what else might he have been planning? I would only caution that there were more "options" on the table even for Truman than we tend to talk about, which is just another way to say that dropping two atomic bombs in rapid succession on cities is not the only way to use an atomic bomb even militarily. That is, even if one thinks it was inevitable that the bombs would be used in a military fashion (which I think is probably true), it is unclear what position FDR might have taken on the question of specific targets (e.g., the Kyoto question), the question of timing (e.g., before or after the Soviet invasion; how many days between each strike?), and diplomatic matters (e.g., would Roosevelt be more open to modifying the Potsdam Declaration terms than Truman was?). So there is room for considerable variability in the "what if Roosevelt hadn't died when he did?" question, especially given that Roosevelt, unlike Truman, had been following the bomb work from the start, and was as a result much less reliant on his advisors' views than Truman was (he frequently bucked Bush, for example, when it came to matters relating to the British).

Would Roosevelt have dropped the bomb on Japan, had he not died? I suspect the answer is yes. One can see, in these brief data points, a mind warming up to the idea of the atomic bomb as not just a deterrent, but a weapon, one that might be deployed as a first-strike attack. In some ways, FDR's query to Groves about Germany is the most interesting piece: this was a step further than anyone else at the time was really making, since Germany's defeat seemed inevitable at that point. But, again, the strict answer is, of course, that we can't really know for sure. Perhaps if FDR had confided his inner thoughts on the bomb to more people, perhaps if he had written them down, perhaps if he had been more involved in the early targeting questions, then we would be able to say something with more confidence. Unless some new source emerges, I suspect Roosevelt's thoughts on the bomb will always have something of an enigma to them. It is not too far-fetched to suggest that this may have always been his intention.

Notes
  1. Vannevar Bush, Pieces of the action (New York: Morrow, 1970), 134. []
  2. See Daniel J. Kevles, "The National Science Foundation and the Debate over Postwar Research Policy, 1942-1945: A Political Interpretation of Science–The Endless Frontier," Isis 68, no. 1 (1977), 4-26. Another example of this behavior, from my own research, is when Bush wanted to seize patent rights relating to atomic research during the war — this was an idea cooked up by Bush, approved by FDR, and then presented as an idea of FDR's, to give it more political, legal, and moral heft. See Alex Wellerstein, "Patenting the Bomb: Nuclear Weapons, Intellectual Property, and Technological Control," Isis 99, no. 1 (2008), 57-87, esp. 65-66. []
  3. Quoted in Richard Rhodes, The Making of the Atomic Bomb (Simon and Schuster, 1986), on 314. []
  4. Vannevar Bush and James Conant, "Atomic Fission Bombs," (17 June 1942), with attached cover letter initialed by Roosevelt, copy in Harrison-Bundy Files Relating to the Development of the Atomic Bomb, 1942-1946, microfilm publication M1108 (Washington, D.C.: National Archives and Records Administration, 1980), Folder 58: "Vannevar Bush Report - March 1942," Roll 4, Target 4. []
  5. Vannevar Bush to James Conant, "Memorandum of Conference with the President," (24 June 1943), copy in Bush-Conant File Relating the Development of the Atomic Bomb, 1940-1945, Records of the Office of Scientific Research and Development, RG 227, microfilm publication M1392, National Archives and Records Administration, Washington, D.C., n.d. (ca. 1990), Roll 2, Target 5, Folder 10, "S-1 British Relations Prior to the Interim Committee [Fldr.] No. 2 [1943, some 1944, 1945]." []
  6. For a very nice discussion of Roosevelt's wartime "atomic diplomacy," see Campbell Craig and Sergey Radchenko, The atomic bomb and the origins of the Cold War (Yale University Press, 2008), chapter 1, "Franklin Delano Roosevelt and Atomic Wartime Diplomacy," 1-33. On the UK-US atomic alliances, see Barton Bernstein, “The uneasy alliance: Roosevelt, Churchill, and the atomic bomb, 1940-1945,” Western Political Quarterly 29, no. 2 (1976), 202-230 []
  7. And just to follow up on that: the US did, in the summer of 1945, request formal UK approval for the dropping of the atomic bomb, and for the release of the Smyth Report and other publicity. The UK readily gave assent to using the weapon against the Japanese, but they did question the wisdom of releasing the Smyth Report. They eventually consented to that as well, after stating their reservations. []
  8. Just as an aside: the meeting, by Stimson's diary account, was only 15 minutes long, and most of it pertained to questions of diplomacy (specifically potential British violations of the Quebec Agreement with respect to French patent arrangements). Stimson's diary entry mentions nothing about targeting question, German, Japanese, or otherwise. So either the discussion of Germany and Japan did not make much impression on him, or he did not think it prudent to write it down. See Henry Stimson diary entry for December 30, 1944, Yale University. Groves own contemporary record of the meeting also neglects to mention anything relating to targets, and instead is entirely focused on diplomatic questions. Leslie Groves, Memorandum on Meeting with President (30 December 1944), Correspondence ("Top Secret") of the Manhattan Engineer District, 1942-1946, microfilm publication M1109 (Washington, D.C.: National Archives and Records Administration, 1980), Roll 3, Target 7, Folder 24, "Memorandums to (Gen.) L. R. Groves Covering Two Meetings with the President (Dec. 30, 1944, and Apr. 25, 1945)." []
Meditations

A bomb without Einstein?

Friday, June 27th, 2014

If Albert Einstein had never been born, would it have changed when nuclear weapons were first produced? For whatever reason, I've seen this question being asked repeatedly on Internet forums, as odd as it is. It's kind of a silly question. You can't go in and tweak one variable in the past and then think you could know what the outcome would be. History is a chaotic system; start removing variables, who knows what would happen. Much less a variable named Albert Einstein, one of the most influential physicists of the 20th century, and whose importance extended well past the equations he wrote... and those were pretty important equations, at that!

1946 - Einstein Time magazine - detail

Einstein's 1946 cover of Time magazine. The mushroom cloud is a beautifully executed combination of the Trinity and Nagasaki mushroom clouds.

On the other hand, this kind of science-fiction counterfactual can have its usefulness as a thought experiment. It isn't history, but it can be used to illustrate some important aspects about the early history of the atomic bomb that a lot of people don't know, and to undo a little bit of the "great man" obsession with bomb history. Albert Einstein has been associated with the bomb both through his famous mass-energy equivalence calculation (E=mc²) and because of the famous Einstein-Szilard letter to Roosevelt in 1939. On the face of it, this gives him quite a primary role, and indeed, he usually shows up pretty quickly at the beginning of most histories of the Manhattan Project. But neither E=mc² nor the Einstein-Szilard letter were as central to the Manhattan Project's success as people realize — either scientifically or historically.

In terms of the science, E=mc² gets a lion's share of attention, most perfectly expressed by Einstein's portrait on the cover of Time magazine in 1946 (above) with his equation emblazoned on a mushroom cloud. A lot of people seem to think that E=mc² played a key role in the development of the bomb, that the weapon just falls out of the physics. This is wrong. The equation can help one understand why atomic bombs work, but it doesn't really tell you how they work, or whether you would expect them to even be possible.

The way I like to put it is this: E=mc² tells you about as much about an atomic bomb as Newton's laws do about ballistic missiles. At some very "low level" the physics is crucial to making sense of the technology, but the technology does not just "fall out" of the physics in any straightforward way, and neither of those equations tell you whether the technology is possible. E=mc² tells you that on some very deep level, energy and mass are equivalent, and the amount of energy that mass is equivalent is gigantic. But it says nothing about the mechanism of converting mass into energy, either whether one exists in the first place, or whether it can be scaled up to industrial or military scales. It gives no hints as to even where to look for such energy releases. After the fact, once you know about nuclear fission and can measure mass defects and things like that, it helps you explain very concisely where the tremendous amounts of energy come from, but it gives you no starting indications.

Eddington's famous plate of the 1919 solar eclipse, which helped confirm Einstein's theory of General Relativity. Very cool looking, and interesting science. But not relevant to atomic bombs. Source.

Eddington's famous plate of the 1919 solar eclipse, which helped confirm Einstein's theory of General Relativity. Very cool looking, and interesting science. But not relevant to atomic bombs. Source.

What about the rest of Einstein's main theoretical work, both Special and General Relativity Theory? They are pretty irrelevant to bomb-making. The physical processes that take place inside atomic bombs are what physicists call "non-relativistic." Relativity theory generally only shows its hand when you are talking about great speeds (e.g. large fractions of the speed of light) or great masses (e.g. gravitational fields), and neither of those come into play with fission bombs. You can neglect relativity when doing the math to make a bomb.1

An intelligent follow-up question might be: "well, just because relativity theory didn't play a role in the bomb process itself doesn't answer the question of whether it started physics on a path that led to the bomb, does it?" Without getting into a long timeline of the "science that led to the bomb," here, I think we could reasonably summarize the situation like this: Einstein's 1905 papers (of which E=mc² was one) did indeed play a role in the subsequent developments that followed, but perhaps not as direct a one as people think. E=mc² didn't inspire physicists to start looking into processes that converted mass to energy — they were already looking into those through an entirely separate (and earlier) line of development, namely the science of radioactivity and particle physics. The fact that huge amounts of energy were released through nuclear reactions, for example, had already been studied closely by the Curies, by Ernest Rutherford, and by Frederick Soddy prior (but only just) to 1905.

Arguably, the most important work Einstein did in this respect was his work on the photoelectric effect (for which he was awarded the Nobel Prize in Physics for 1921), which helped establish the physical reality of Max Planck's idea of a quantum of energy, which helped kick off investigations into quantum theory in earnest. This had a big influence on the later direction of physics, even if Einstein himself was never quite comfortable with the quantum mechanics that developed in subsequent decades.

The Hahn-Meitner-Strassman experiment apparatus, at the Deutsches Museum in Munich. My own photo.

The Hahn-Meitner-Strassman experiment apparatus, at the Deutsches Museum in Munich. My own photo.

Did any of the relativity work lead, though, down the path that eventually arrived at the discovery of fission in 1939? I don't think so. The experiments that Hahn, Meitner, and Strassman were doing in Berlin that lead to the discovery of fission in uranium were themselves careful replications of work that Fermi had done around 1934. Fermi's work came directly out of an experimentalist, nuclear physics context where physicists were bombarding substances with all manner of subatomic particles to see what happened. It was most directly influenced by the discovery of the neutron as a new sub-atomic particle by Chadwick in 1932. This came out of work on atomic theory and atomic modeling that was being done by Rutherford and his students from the early 1910s-1920s. And this early nuclear physics came, most directly, out of the aforementioned context of radioactivity and experimental physics of the late 19th century.

None of which has a strong, direct connection to or from Einstein's work in my mind. They have some overlaps of interest (e.g. Bohr was a student of Rutherford's), but the communities working on these sorts of experimental problems are not quite the same as the more theoretical circle that Einstein himself worked in.2 If we somehow, magically, removed Einstein's early work from the equation here, does the output change much? There would be some reshuffling, probably, but I sort of think that Rutherford would still be doing his thing anyway, and from that much of the other work that led to the bomb would eventually come out, even if it had a somewhat different flavor or slightly different timeline.

My least favorite way of depicting the fission process, where energy (E) is a magic lightning bolt coming out of the splitting atom. In reality, most of the energy comes in the form of the two fission products (F.P. here) repelling from each other with great violence. Source.

This is my least-favorite way of depicting the fission process, where energy (E) is a magic lightning bolt coming out of the splitting atom. In reality, most of the energy comes in the form of the two fission products (F.P. here) repelling from each other with great violence. Source.

Do you even need to know that E=mc² to make an atomic bomb? Perhaps surprisingly, you don't! There are other, more physically intuitive ways to calculate (or measure) the energy release from a fission reaction. If you treat the fission process as being simply based on the electrostatic repulsion of two fission products, you get essentially the same energy output in the form of kinetic energy. This is how the physics of fission is often taught in actual physics classes, because it gives you a more concrete indication of how that energy is getting released (whereas E=mc² with the mass-defect makes it seem like a magical lightning bolt carries it away). There are other more subtle physical questions involved in making a bomb, some of which have Einstein's influence on them in one way or another (e.g. Bose–Einstein statistics). But I think it is not totally crazy to say that even if you somehow imagine a world in which Einstein had never existed, that the physics of an atomic bomb would still work out fine — Einstein's specific technical work wasn't central to the problem at all. We also have not brought up the question of whether without Einstein, relativity in some form would have been discovered anyway. The answer is probably "yes," as there were people working on similar problems in the same areas of physics, and once people started paying a close attention to the physics of radioactivity they were bound to stumble upon the mass-energy relationship anyway. This isn't to denigrate or underestimate Einstein's influence on physics, of course. What makes Einstein "Einstein" is that he, a single person, pulled off a great number of theoretical coups all at once. But if he hadn't done that, there's no reason to think that other people wouldn't have come up with his theoretical insights individually, if slightly later.

A postwar re-creation of the genesis of the Einstein-Szilard letter.

A postwar re-creation of the genesis of the Einstein-Szilard letter.

What about Einstein's most direct role, the famous Einstein-Szilard letter of 1939 that influenced President Roosevelt to set up the first Uranium Committee? This is a tricky historical question that could have (and may at some point) an entirely separate blog post relating to it. Its writing, contents, and influence are more complex than the standard "he wrote a letter, FDR created the Manhattan Project" understanding of it that gets boiled down in some popular accounts. My feeling about it, ultimately, is this: if the Einstein-Szilard letter hadn't been written, it isn't clear that anything would be terribly different in the outcome in terms of making the bomb. Something like the Uranium Committee might have been started up anyway (contrary to popular understanding, the letter was not the first time Roosevelt had been told about the possibility of nuclear fission), and even if it hadn't, it isn't clear that the Uranium Committee was necessary to end up with a Manhattan Project. The road from a fission program whose primary output was reports and a fission program whose primary output was atomic bombs was not a direct one. By early 1941, the Uranium Committee had failed to convince scientist-administrators that atomic bombs were worth trying to build. They had concluded that while atomic bombs were theoretically feasible, they were not likely to be built anytime soon. Had things stayed there, it seems unlikely the United States would have built a bomb ready to use by July/August 1945.

The "push" came from an external source: the British program. Their MAUD Committee (an equivalent of the Uranium Committee) had concluded that a nuclear weapon would be much easier to build than the United States had concluded, and sent an emissary (Mark Oliphant) to the United States to make sure this conclusion was understood. They caught Vannevar Bush's ear in late 1941, and he (along with Ernest Lawrence, Arthur Compton, and others) wrested control of the uranium work out of the hands of the Uranium Committee, accelerated the work, and morphed it into the S-1 Committee. The name change is significant — it is one of the more vivid demonstrations of the increased degree of seriousness with which the work was taken, and the secrecy that came with it. By late 1942, the wheels for the full Manhattan Project were set into motion, and the work had become a real bomb-making program.

Einstein wasn't involved with any of the later work that actually led to the bomb. He almost was, though: in late 1941, Bush considered consulting Einstein for help on the diffusion problem, but opted not to push for it — both because Einstein wasn't regarded as politically reliable (he had a fat FBI file), and his approach to physics just wasn't very right for practical problems.3 Bush decided that Einstein would stay out of the loop.

Usual, rare anti-Nazi propaganda postcard from 1934, showing Hitler expelling Einstein from Germany, titled "The Ignominy of the 20th Century." It is one of the most blatant visual renderings of Einstein as a "scientific saint." Source.

Unusual, rare anti-Nazi propaganda postcard from 1934, showing Hitler expelling Einstein from Germany, titled "The Ignominy of the 20th Century." It is one of the most blatant visual renderings of Einstein as a "scientific saint." Source.

Let's sum it up. Did Einstein play a role in the creation of the atomic bomb? Of course — his physics isn't irrelevant, and his letter to Roosevelt did start one phase of the work. But both of these things are less prominent than the Time-magazine-cover-understanding makes them out to be. They weren't central to what became the Manhattan Project, and if you could somehow, magically, remove Einstein from the equation, it isn't at all clear that the atomic bomb wouldn't have been built around the time it actually was built. I don't think you can really credit, or blame, Einstein for the atomic bomb, in any direct fashion. Einstein did play a role in things, but that role wasn't as crucial, central, or direct as a lot of people imagine. If you could magically drop him out of history, I think very little in terms of atomic bombs would have been affected.

So why does the Einstein and the bomb myth persist? Why does everybody learn about the Einstein letter, if it wasn't really was sparked the Manhattan Project? There are two answers here, I think. One is that Einstein was, even before the war, one of the best-known, best-recognized physicists of the 20th century, and was synonymous with revolutionary science and genius. Having him "predict" the atomic bomb with equations in 1905 — 40 years before one was set off — is the kind of "genius-story" that people love, even if it obscures more than it enlightens. It also has a high irony quotient, since Einstein was forced to flee from Germany when the Nazis took power.

But there's another, perhaps more problematic aspect. In many early copies of the Smyth Report that were distributed by the government, copies of the Einstein letter were mimeographed and loosely inserted. The magnification of Einstein's role was purposefully encouraged by the government in the immediate period after using the weapon. (And it was even a convenient myth for Einstein, as it magnified his own importance and thus potential influence.) Hanging the atomic bomb on Einstein's head was an act of self-justification, of sorts. Einstein was the world's greatest genius in the eyes of the public, and he was a well-known pacifist, practically a scientific saint. After all, if Einstein thought building a bomb was necessary, who could argue with him?

Notes
  1. As Robert Serber puts it: "Somehow the popular notion took hold long ago that Einstein's theory of relativity, in particular his famous equation E = mc², plays some essential role in the theory of fission. Albert Einstein had a part in alerting the United States government to the possibility of building an atomic bomb, but his theory of relativity is not required in discussing fission. The theory of fission is what physicists call a non-relativistic theory, meaning that relativistic effects are too small to affect the dynamics of the fission process significantly." Robert Serber, The Los Alamos Primer: The First Lectures on How to Build an Atomic Bomb (University of California Press, 1992), 7. []
  2. For a good, non-teleological, non-bomb-centric approach to the context of 19th- and 20th-century physics, Helge Kragh's Quantum Generations: A History of Physics in the Twentieth Century (Princeton University Press, 2002), is excellent. []
  3. Einstein wasn't entirely a head-in-the-clouds physicist, of course. He worked at the patent office, and as Peter Galison has written about, even his famous thought experiments were often motivated by experience with practical problems of time synchronization. And he did help invent a refrigerator with Leo Szilard. But his work on diffusion physics was too abstract, too focused on first-principle analysis, for use in producing a practical outcome. []
Visions

Death dust, 1941

Friday, March 7th, 2014

One of the biggest misconceptions that people have about the Manhattan Project is that prior to Hiroshima, all knowledge of atomic energy and nuclear fission was secret — that the very idea of nuclear weapons was unthought except inside classified circles. This is a side-effect of the narratives we tell about Manhattan Project secrecy, which emphasize how extreme and successful these restrictions on information were. The reality is, as always, more complicated, and more interesting. Fission had been discovered in 1939, chain reactions were talked about publicly a few months later, and by the early 1940s the subject of atomic power and atomic bombs had become a staple of science journalists and science fiction authors.

Campbell's magazine, Cartmill's story. Image source.

Leaks or speculation? Campbell's magazine, Cartmill's story. Image source.

John W. Campbell, Jr., was a prolific editor and publisher of science fiction throughout the mid-20th century. In the annals of nuclear weapons history, he is best known for publishing Cleve Cartmill's story "Deadline" in March 1944, which talks about forming an atomic bomb from U-235. This got Cartmill and Campbell visitors from the FBI, trying to figure out whether they had access to classified information. They found nothing compromising (and, indeed, if you read Cartmill's story, you can see that while it gets — as did many — that you can make atomic bombs from separated U-235, it doesn't really have much truth in the specifics), but told Campbell to stop talking about atomic bombs.

But Campbell's flirtation with the subject goes a bit deeper than that. Gene Dannen, who runs the wonderful Leo Szilard Online website, recently sent me a rare article from his personal collection. In July 1941, Campbell authored an article in PIC magazine with the provocative title, "Is Death Dust America's Secret Weapon?It's a story about radiological warfare in what appears to be rather middle-brow publication about entertainment. Click here to download the PDF. I don't know anything about PIC, and haven't been able to find much on it, but from the cover one wouldn't necessarily expect it to be a source for people looking for hard-hitting science reporting — though the juxtaposition of DEATH DUST, "world's strangest child," and the "DAY DREAM" woman is a wonderfully American tableau.


PIC magazine 1941 - Campbell - Death Dust - cover

The story itself starts off with what has even by then become a clichéd way of talking about atomic energy ("A lump of U-235 the size of an ordinary pack of cigarettes would supply power enough to run the greatest bomb in the world three continuous years of unceasing flight"), other than the fact that it is one of the many publications that points out that after an exciting few years of talk about fission, by 1941 the scientists of the United States had clamped themselves up on the topic. The article itself admits none of this is really a secret, though — that all nations were interested in atomic energy to some degree. It vacillates between talking about using U-235 as a power source and using it to convert innocuous chemicals into radioactive ones.

Which is itself interesting — it doesn't seem to be talking about fission products here, but "synthetic radium powders." It's a dirty bomb, but probably not that potent of one. Still, pretty exciting copy for 1941. (Campbell would much later write a book about the history of atomic energy, The Atomic Story, where he also spent a lot of time talking about "death dust.")

The article contains a really wonderful, lurid illustration of what a city that had been sprayed with "horrible 'death dust'" would look like:

"Even rats wouldn't survive the blue, luminescent radioactive dust. Vultures would be poisoned by their own appetites."

"Even rats wouldn't survive the blue, luminescent radioactive dust. Vultures would be poisoned by their own appetites."

The most interesting parts of the article are when it veers into speculation about what the United States might be doing:

With all the world seeking frantically for the secret of that irresistible weapon, what are America's chances in the race?

It is a question of men and brains and equipment. Thanks to Hitler's belief that those who don't agree with him must be wrong, America now has nearly all the first-rank theoretical physicists of the world. Mussolini's helped us somewhat, too, by exiling his best scientists. Niels Bohr, father of modern atomic theory, is at Princeton, along with Albert Einstein and others of Europe's greatest.

The National Defense Research Committee is actively and vigorously supporting the research in atomic physics that seeks the final secrets of atomic power. Actively, because the world situation means that they must, yet reluctantly because they know better than anyone else can the full and frightful consequences of success. Dr. Vannevar Bush, Chairman of the Committee, has said: "I hope they never succeed in tapping atomic power. It will be a hell of a thing for civilization."

Bohr was in fact still in occupied Denmark in July 1941 — he had his famous meeting with Heisenberg in September 1941 and wouldn't be spirited out of the country until 1943. The photographs identify Harold Urey and Ernest Lawrence as American scientists who were trying to harness the power of atomic energy. Since Urey and Lawrence were, in fact, trying to do that, and since Vannevar Bush was, in fact, ostensibly in charge of the Uranium Committee work at this point, this superficially looks rather suggestive.

PIC magazine 1941 - death dust - scientists

But I think it's just a good guess. Urey had worked on isotope separation years before fission was discovered (he got his Nobel Prize in 1934 for learning how to separate deuterium from regular hydrogen), so if you know that isotope separation is an issue, he's your man. Lawrence was by that point known worldwide for his "atom smashing" particle accelerators, and had snagged the 1939 Nobel Prize for the work done at his Radiation Laboratory. If you were going to pick two scientists to be involved with nuclear weapons, those are the two you'd pick. As for Bush — he coordinated all of the nation's scientific defense programs. So of course, if the US was working on atomic energy as part of their defense research, Bush would have to be in charge of it.

The other illustrations seem to be just generically chosen. They are particle accelerators of various sorts; one cyclotron and many electrostatic (e.g. Van De Graff) accelerators. Cyclotrons did have relevance to isotope separation — they were used to develop the Calutrons used at Y-12 — but the captions don't indicate that this is why these machines are featured.

I've never seen any evidence that Campbell's story in PIC came to any kind of official attention. Why not? In the summer of 1941, there was a lot of talk about U-235 and atomic energy — and Campbell's article really isn't the most provocative of the bunch. There wasn't any official press secrecy of any form on the topic yet. "Voluntary censorship" of atomic energy issues, which is what would get Cartmill and Campbell in trouble later, didn't start up until early 1943. Mid-1941 was still a time when a journalist could speculate wildly on these topics and not get visits from the FBI.

The irony is, there were official fears of a German dirty bomb, but they didn't really crop up until 1942. But the American bomb effort was starting to get rolling in the late summer of 1941. By the end of 1941, Bush would be a convert to the idea of making the bomb and would start trying to accelerate the program greatly. It wasn't the Manhattan Project, yet, but it was on its way. Campbell's article was, in this sense, a bit ahead of its time.

A Campbell publication from 1947 — where he apparently has a better understanding of atomic power. Here he seems to have just scaled down a Hanford-style "pile" and added a turbine to it. It took a little more effort than that in reality...

A Campbell publication from 1947 — where he apparently has a better understanding of atomic power. Here he seems to have just scaled down a Hanford-style "pile" and added a turbine to it. It took a little more effort than that in reality...

What I find most interesting about Campbell's article is that it reveals what the informed, amateur view of atomic energy was like in this early period. Some aspects of it are completely dead-on — that U-235 is the important isotope, that isotope separation is going to matter, that places with particle accelerators are going to play a role, that the acquisition of uranium ore was about to get important, that fears of German use of atomic energy existed. But parts of it are completely wrong — not only would dirty bombs not play a role, he doesn't seem to understand that fission products, not irradiated substances, would play the strongest role. He doesn't really seem to understand how nuclear power would be harnessed in a reactor. He doesn't really seem to get fission bombs at all.

This mixture of accuracy and confusion, of guess and folly, tells us a lot about the state of public knowledge at the time. Atomic energy was a topic, it was an idea — but it wasn't yet something tangible, a reality. So when people found out, in 1945, that the United States had made and detonated atomic fission bombs, they were primed to understand this as the beginning of a "new era," as the realization of something they had been talking about for a long time — even if the details had been secret.

Redactions

Shurcliff on Secrecy

Friday, July 5th, 2013

William A. Shurcliff is one of my favorite Manhattan Project dramatis personaeI've written about him before on here, some time back. In a nutshell, Shurcliff was a physicist who worked as a technical advisor to Vannevar Bush in the Office of Scientific Research and Development, and was connected to the bomb project only peripherally. In fact, his value to Bush was that he wasn't really steeped in the work to make the bomb: he was a trusted, technically-competent outsider. So he was the person they called, for example, when they needed a censor for atomic patents, because he could be "read in" on the secrets but wasn't otherwise in a position to have conflicted interests. Among his other roles on the bomb project was to be the copyeditor of the Smyth Report, and he later was the "official historian" for Operation Crossroads.

William Shurcliff, age 39, 1948, 29 x 22.5 inches, Oil.

A painting of William A. Shurcliff from 1948 by his father-in-law, the American artist Charles Hopkinson.

What I love about the Shurcliff one finds in the Manhattan Project files is that he shows up in the most unusual, unsought places, and he loved to write unsolicited memos. I imagine him sitting around, thinking about some core problem related to the social and political future of atomic energy, and writing his thoughts out in a methodical fashion and sending them to the top. Occasionally there is evidence that these memos were read and circulated, though none were ever obviously used as the basis of policy going forward. Still, what's really wonderful about someone like Shurcliff is that he wasn't being exposed to all of the other scientists on the project, so he had a relatively independent outlook. This makes him a nice "barometer" for what kinds of thoughts were thinkable at the time, outside of the standard range of positions that the scientists took on the issues in front of them.

One of the issues that Shurcliff chimed in on was the prospects of long-term scientific secrecy. Late in the project (i.e. late 1944 and early 1945), the scientists at the University of Chicago had largely finished up their portion of the work (helping getting the Hanford reactors designed and running), and had more extra time for contemplation of long-term issues than those who were at Los Alamos. So they did things like write the Franck Report and other studies into the long-term prospects of nuclear energy, secrecy, the use of the bomb, and so on. A repeating theme in all of these reports is that long-term, postwar nuclear secrecy would not work. It is a position you will be familiar with from discussions today: secrecy would not prevent foreign nations (or "enemies" more broadly) from getting the bomb,  it would inhibit and slow future American work, and the worst thing imaginable would be a "secret arms race" between nations.

Vannevar Bush and James Conant, despite being key people behind the secrecy procedures of the Manhattan Project (which started well before the Army got involved), thoroughly embraced the anti-secrecy line. As Bush put it to President Truman in September 1945: "A secret race on atomic bombs can lead to a very unhappy world."  In fact, almost every discussion I've found of postwar secrecy made during the Manhattan Project takes more or less this sort of position.

Shurcliff, however, approached it differently. I'm not sure how he picked up that these thing were "in the air," though he was in limited doses exposed to the Chicago scientists while doing his patent work. In December 1944, he wrote a seven-page memo to Richard Tolman, another OSRD scientist who worked as a personal technical advisor to General Groves (among other things), with the lengthy subject heading of: "Analysis of the theses: (A) Maintaining secrecy on the details of the present weapon will not insure security. (B) Secrecy will come from 'keeping ahead.'"1

Click on the image to view the full document.

Click on the image above to view the full memo. Shurcliff's memo was itself classified "Secret — Limited" which basically meant that only the very top-top level of administrators and advisors were allowed to read it. The "Top Secret" classification was only just starting to be used in this period, and probably only would have been used here if the memo had any insight onto when the United States would have a bomb ready to use.

Keeping to his form, Shurcliff's memo is highly-structured and carefully argued. He starts it off with a statement of his motivations and his conclusions:

Explanation: Some analysis of these theses appears called for since they lie at the heart of the general secrecy policy which, in turn, is fundamental to the entire postwar policy. These theses have been endorsed by many persons heard by the [Interim] Committee.2 The writer knows of no one-who has disagreed with these theses.

Conclusions: While it can be said that the theses are "more true than false," it is apparent that they are seriously inadequate and to an appreciable extent misleading, since:

With regard to Thesis A, maintaining secrecy will make for security for a good many years at least — especially with respect to the many smaller countries incapable of developing nucleonics weapons independently.3 To place one's faith in secrecy may be rash, but appreciably to dispense with secrecy may be even more rash.

With regard to Thesis B, even "keeping ahead" may prove futile when even "obsolete" nucleonics weapons can be employed by an enemy to wipe out our major centers, including nucleonics centers, in a single hour before declaration of war.

If you're a regular reader of this blog, you're probably recoiling from Shurcliff's pro-secrecy arguments. They are pretty far distant from the "there is no secret" mantra of the postwar atomic scientists, but they are not bad arguments. Shurcliff's approach is eminently pragmatic, not ideological. His memo is one about  technology transfer between nations, with an eye beyond seeing things as just a competition between two powers. Of course, he says, you can't maintain such secrets indefinitely. But if you can maintain them for a few decades, that's not nothing — time is a valuable commodity. 

Shurcliff also augments his analysis with the practical experience of technical espionage. Shurcliff's main job at the OSRD was to be a liaison with other branches regarding information seized about enemy technology. So if the Allied soldiers found reports about, say, German tanks, they would send them to Shurcliff, and he'd figure out which of the OSRD divisions could make the most use of it. So unlike the scientists at Chicago, he actually knew a little bit about how difficult it was to construct technology based solely on knowledge alone:

Parenthetical note: The writer recalls many instances during 1943 and 1944 where, despite a wealth of fragmentary information from cooperative enemy prisoners, neutrals, and allied agents, the really significant technical engineering data on enemy devices remained wanting until uncomfortably late dates. Examples are: (a) technical characteristics of German infra-red search receivers and image tubes; (b) control frequencies for the German HS-293 glider bomb; (c) launching means, fuels, and radio control means of the German V-1 flying bomb. In-all these cases the serious gaps in our knowledge were not filled until reasonably intact specimens of the weapons in question had been captured. The abundance of such situations is believed to show that there is a good chance that appreciable amounts of highly-technical engineering data on secret devices may be kept out of enemy hands for years — perhaps decades.

Shurcliff's estimates on the possibility of real espionage were, in the end, more optimistic than the reality. Neither he nor anyone else suspected that Los Alamos was full of a number of relatively high-level spies, and that direct design information on the bombs would be so immediately and thoroughly compromised. But it is worth noting that Shurcliff's above discussion about the difficulty of reconstructing a physical technology from design information alone is, in fact, shown to be reasonably on the mark when we look at the history of the Soviet program. Even though the Soviets did have very detailed design information on the atomic bomb, it still took a tremendous effort to turn that into an actual bomb, and it has become much more clear over the years that information was not the primary determinant of when the Soviets developed their first nuclear weapons.

William Shurcliff, 50 years later.

William Shurcliff, 50 years later.

Lastly, Shurcliff's views on "staying ahead" feel remarkably relevant to our modern day, as well. Nukes, he argues, are not weapons were there is such a significant difference between the "best" and the "second-best." Getting hit with an "obsolete" weapon is still going to be a disastrous thing. Does it matter that the North Korean's largest test was 10 kilotons, whereas the largest bomb in the US arsenal is megaton-range? To most people, probably not — 10 kilotons will still ruin your day.

Shurcliff ends his memo with a set of "Concluding Remarks":

We are entering an age (starting, say, in 1960) in which even inferior arms (e.g., 1950 nucleonics bombs) any be used suddenly to cripple and perhaps conquer the most advanced country. The coming age may be further characterised (in the following over-simplified and over-dramatic terms:!) thus:

An age in which surprise aggression can laugh at military defense;
An age in which nucleonics is the grand currency of military negotiations;
An age in which our scientists will no longer be able to contribute to the defense of the country;
An age in which international physical compulsion is possible, but in which international physical conflict is impossible;
An age in which international conflicts can only be moral conflicts;
An age in which the line separating international disagreement between two countries from sudden devastation of one of them may become vanishingly thin;
An age in which "balance of power" and "threat" are merely historical terms.

If the last war was a chemists' war and  the present war is a physicists'  war, the next war may be an "administrator's war" — a war whose outcome may be determined by the mere formulation and concealment of the administrative decision as to whether and when to strike.

What a conclusion!

So what became of Shurcliff's analysis? He sent it to Tolman, who forwarded it to Bush, and Bush in turn forwarded it to Harvey H. Bundy, an assistant to Secretary of War Stimson (and father of McGeorge Bundy), with the following note attached:

Here is the pessimistic viewpoint, and I think you ought to read it. I would add 1) while scientific interchange is inevitable, transmission of details of weapons is not. 2) A sudden strike will not prevent a riposte, if stores of weapons are well protected underground. The case as between two nations with hidden and ample supplies is of most interest, as it will be the case probably, and is not here treated.

I doubt Shurcliff ever knew that his memo had been forwarded up the chain like this — the secrecy, ironically, meant that he rarely had any indication of what was going on other than his own little corner of things. And perhaps even more ironically, that never kept him from speculating and dreaming about the possibilities of the future.

I don't think anything more came of his memo. But I do treasure it, not because I necessarily agree with it — though I do find it better rooted in the realities of technology and epistemology than many of the statements of the anti-secrecy scientists of the time — but because it is a little indication of the fact that there were some nuclear physicists in 1944 who could find ways to defend secrecy (a rare thing!), and also find ways to see, arguably with some clarity, the shape of things to come.

Notes
  1. William A. Shurcliff to Richard C. Tolman (8 December 1944), Harrison-Bundy Files Relating to the Development of the Atomic Bomb, 1942-1946, microfilm publication M1108 (Washington, D.C.: National Archives and Records Administration, 1980), Roll 6, Target 4, Folder 75, "Interim Committee -- Publicity." []
  2. The Interim Committee was the main administrative body planning for what to do once the bomb was a matter of public record, i.e. after it had been used on Japan. []
  3. "Nucleonics" was at this time being floated as a new name for the entire field of nuclear technology, in analogy to "electronics." It didn't take off. []