Dear Bob:

The subject of very high yield weapons is of continuing concern to the Atomic Energy Commission. During the atmosphere, major AEC developmental effort in this area was terminated, this action being in consonance with the known requirements of the Department of Defense. As you are aware, our largest yield weapon is the--------------

At the time of entry into stockpile, ------------

represented our most advanced technology for the achievement of high yields within given weight and size limitations.

The purpose of this letter is to provide estimated present capabilities and limitations as well as our projected capabilities in high yield weapon development. (See enclosure 1 for detailed discussion.) As a result of the recent atmospheric series, the AEC has successfully pursued concepts which may lead to extremely high yields in relatively light configurations but with relatively large diameters. In view of these achievements, we have reviewed our capabilities and associated problems pending a decision to continue development of large yield devices. Dr. Johnson, AT30(AM), by letter dated August 7, 1962, provided the AEC with the possible requirements of the DOD for nuclear weapon developments, including those which were being considered for application of high yield devices. Accordingly, our analysis has been made of our present and projected capabilities to develop weapons vis-à-vis the proposed requirements of the DOD. For your information, specific systems for which possible future requirements were considered are:

a. High yield FUO bomb for the B-52 aircraft,

b. High yield warhead for TITAN II (without re-entry), and

c. High yield warheads and bombs for TITAN III, Saturn and the C-133B.

Our present nuclear capabilities to produce advanced high yield weapons can be categorized under three general areas. The first would be the result of refining and increasing of the size and weight of conventional nuclear systems-----------------. It is perhaps in this area that
large systems could be available in the shortest time. The second
category is that of pursuing the [---] concept. It
is in this second area where we would look for a second generation
high yield system with relatively high efficiencies and light weights
when compared to the first category; however, weapons associated with
this concept may have volume limitations. The third category, the
third generation of high yield devices, involves concepts yet to be
proven feasible. It is in the latter category that we hope to achieve
the ultimate in high yield, low weight and acceptable volume. The
enclosure reflects a more detailed description of capabilities within
each of the above areas.

There are several factors other than technical (as discussed in the
preceding paragraph) which are pertinent in considering the development
and production of high yield weapons, defined as those with energy
release greater than 25 MT. These factors are:

a. **Testing.** Additional atmospheric testing will be required for the
development of any high yield weapons. The amount of testing will
vary depending on the complexity of the requirements. For instance,
to develop only a high yield HMP bomb, based on extrapolating
present technology, perhaps one test would suffice; to pursue
development of several systems using advanced concepts will require
numerous tests, possibly spaced over several years.

b. **Fission.** Testing high yield weapons raises the historic problem
of increasing world-wide fallout. Fortunately, full-scale nuclear
testing of high yield weapons is not necessary in all cases. In
general, high yield devices can be proof-tested---
of final design yield; further, in certain cases, the "low-yield"
proof tests would result in fission contribution to a much less
degree than that obtained in the "full-yield" version.

c. **Impact on AEC.** A complete evaluation of the degree of impact on
the resources of the AEC must be determined after specific
requirements which closely define the size and uses of proposed
weapon have been established. For example, the fabrication of
high yield nuclear components will require the handling of shapes
larger than our production facilities can presently accommodate.
Special production equipment must be provided; this requires
additional lead time which would not be required for a less
radical program. If a high yield bomb is required for lay down
application, a new technology as well as a major non-nuclear
test program will be required in order to assure sufficient
structural rigidity combined with adequate droguing to achieve
this end. Although these are formidable problems, their ultimate solution is within the capability of the AEC. However, the cost of such a development program is great; either other weaponization programs must be delayed, or additional resources must be forthcoming.

4. **Presidential Approval.** Implicit in the decision of an earlier administration is the requirement that Executive approval must be obtained prior to a major development and production effort to achieve a high yield weapon capability. Before expanding our current program to such a major effort, we believe that Presidential approval should be obtained.

In summary, we wish to emphasize our confidence that the AEC can fulfill the many demands placed upon it if a decision is made for the United States to embark on a high yield weapon capability. However, we would also like to emphasize that a high yield weapon development effort represents a major financial and technical drain on our resources which we would be extremely reluctant to embark on unless a firm decision were forthcoming which would justify our effort. We realize that this is a complex decision; one that will allow the necessary nuclear testing as well as the establishment of firm requirements. With regard to nuclear testing, we could be ready for a test series as early as late summer or early fall of 1963. At the present time, these test preparations do involve the selection of technical designs and areas in which we intend to explore. To this end, your specific requirements, particularly in the area of high yield weapons, are, of course, solicited.

While the question of the military requirement for very high yield weapons is one for your decision, we are all aware that the USSR has a definite high yield capability, and the accruing politico-psychological advantages thereof are being exploited to the maximum. It may well be that more than purely military needs ought to be considered. I suggest, therefore, that we prepare a joint letter to the President raising the question as to whether we should have a high yield weapon capability, considering not only the military requirements for such weapons, but also the resulting political implications.

If you wish to discuss this subject further, we will be most pleased to do so. A copy of this letter is being provided to Mr. McGeorge Bundy.

Sincerely yours,

Chairman

The Honorable Robert S. McNamara
The Secretary of Defense

Enclosure:
Estimate of the AEC Capabilities for the Achievement of High Yield Weapons

cc: Honorable McGeorge Bundy
Cy #3A
ESTIMATE OF THE ASE CAPABILITIES
FOR THE ACHIEVEMENT OF HIGH YIELD WEAPONS

First Generation Bombs

First generation high yield weapons would be

- concept has provided confidence in our ability to provide weapons in the megaton range with
 rather firm dimensional and weight estimates. Current capabilities of
 the two nuclear laboratories on first generation weapons are as follows:

a. (1) The Los Alamos Scientific Laboratory has provided the following parameters on a conceptual high yield bomb:

Yield (total) - 100 ME
Fission yield - 20-30 ME
Weight - 30,000 lbs.
Diameter - 66 in.
Length - 276 in.
Laydown - 10,000 lbs. additional

It is possible to vary slightly the stated weight and yield
trade-off, but the maximum yield-to-weight appears to be

- if a requirement materializes for a weapon of
 this nature, a test would be proposed of a clean version

- a period of somewhat in excess of three years would be required
 for development.

(2) The LASL has also proposed a clean version of the above weapon.

- It would be required to test such a development.

b. The Lawrence Radiation Laboratory has proposed a

- at a weight of 20,000 lbs.
 (non-MUFO). The initial development period to ready such a device
 for testing would be about one year. With an additional period of
 time, further extrapolation - could result in a
 - device weighing about 30,000 lbs.

NOTE: Although each laboratory has used a different initial concept a comparison of the two approaches reflects that within the
present state-of-the-art it would be feasible to design

- weapon in the 20,000 - 30,000 lb. weight class (non-MUFO).
Second Generation

a. [insert text]

b. [insert text]

Current estimates of yields and weights which are achievable

<table>
<thead>
<tr>
<th>Weight</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000 lbs.</td>
<td></td>
</tr>
<tr>
<td>19,000 lbs.</td>
<td></td>
</tr>
</tbody>
</table>

c. Several points should be noted

Further, to develop any particular weaponised version will probably require at least two atmospheric tests - one experimental test at the approximate weight and yield, plus a prototype test. Lastly, it is estimated that at least a four-year developmental period will be required to PVU for any weaponised version.

Third Generation

a. To approach further the theoretical upper limit yield-to-weight ratio, it is necessary to
b. It is premature to predict capabilities in this area; however, a test involving this principle is planned for inclusion in the next series of atmospheric tests.

Work Load

The impact on the ABC development and production complex to initiate a specific high yield weaponization program is of considerable magnitude. This is understandable when one realizes the weights, volumes and types of materials being considered. Also, with respect to pre-production tooling, the ABC will have to establish new fixtures and equipment of magnitudes heretofore unknown insofar as nuclear weaponry is concerned. In summary, to produce high yield weapons will require a scope of effort much larger than any previous ABC weaponization effort.