Visions

Sakharov’s turning point: The first Soviet H-bomb test

by Alex Wellerstein, published January 31st, 2014

The Soviets set off their first megaton-range hydrogen bomb in November 1955. It was the culmination of many years of effort, in trying to figure out how to use the power of nuclear fission to release the power of nuclear fusion in ways that could be scaled up arbitrarily.1 The Soviet bomb was designed to be a 3-megaton warhead, but they set it off at half strength to avoid too much difficulty and fallout contamination. Unlike the US, the Soviets tested their version version by dropping it out of a bomber — it was not a big, bulky, prototype like the Ivy Mike device. But it was not an uneventful test. The details are little talked about, but it serves as an impressive parable about what can go wrong when you are dealing with science on a big scale.

Andrei Sakharov, from nuclear weapons designer to aged dissident.

Andrei Sakharov, from young nuclear weapons designer to aged dissident. Source.

Andrei Sakharov has a stunning chapter on it in his memoirs. It makes for an impressive story in its own right, but Sakharov also identifies the experience as a transformative one in his own thinking about the responsibility of the scientist, as he made his way from nuclear weapons designer to political dissident.2

Sakaharov starts out by talking about going to Kazakhstan to see the test. He had by this time been assigned two armed KGB officers, known euphemistically as “secretaries,” whose jobs were to act as bodyguards and “to prevent undesirable contacts.” Sakharov claims not to be have been too bothered by them. They lived next door.

The test of the device, code-named RDS-37, was to be the 24th Soviet nuclear test, and was the largest ever tested at the Semipalatinsk test site. This created several logistical difficulties. In order to avoid local nuclear fallout, it was going to be an airburst. The size of the bomb, however, brought up the possibility that it might accidentally blow the bomber that delivered it out of the sky. To avoid this, the bomber was painted white (to reflect the thermal radiation), and a big parachute was applied to the bomb so that the bomber could get away fast enough. Sakharov was satisfied enough with the math on this that he asked if he could ride along on the bomber, but the request was denied.

Sakharov’s account lingers on the incongruity between testing nuclear weapons in beautiful, wild places. Siberia was “a new and spellbinding experience for me, a majestic, amazingly beautiful sight.” He continued: “The dark, turbulent waters of the Irtysh, dotted with a thousand whirlpools, bore the milky-blue ice floes northward, twisting them around and crashing them together. I could have watched for hours on end until my eyes ached and my head spun. Nature was displaying its might: compared to it, all man’s handiwork seems paltry imitation.

The RDS-37 test device. Source.

The RDS-37 test device. Source.

A test trial-run on November 18th went smoothly, but the first test attempt, on November 20th, did not. As David Holloway recounts in Stalin and the Bomb, that same Siberian wintery majesty that dazzled Sakharov made for difficult testing conditions.3 The fully-loaded Tu-16 bomber had to abort when the test site was unexpectedly covered by clouds, making them unable to see the target aiming point and rendering the optical diagnostic systems inoperable. The plane was ordered to land, only now it had a fully-armed experiment H-bomb on board. There was concern that if it crashed, it could result in a nuclear yield… destroying the airfield and a nearby town. The airfield had meanwhile iced over. Igor Kurchatov, the lead Soviet nuclear weapons scientist, drove out to the airfield himself personally to see the airfield. Sakharov assured him that even if it crashed, the odds of a nuclear yield were low. An army unit at the airfield quickly worked to clear the runway, and so Kurchatov ordered the plane to land. It did so successfully. Kurchatov met the crew on the field, no doubt relieved. Sakharov recalls him saying, “One more test like [this one] and I’m retiring.” As for Sakharov, he called it “a very long day.”

Two days later, they gave it another go. This time the weather cooperated, as much as Siberian weather cooperates. The only strange thing was a temperature inversion, which is to say, at higher altitudes it was warmer than at lower altitudes, the opposite of the usual. The meteorologists gave the go-ahead for the testing.

Sakharov stayed at a laboratory building on the outskirts of a small town near the test site. An hour before the test, Sakharov saw the bomber rising above the town. It was “dazzling white,” and “with its sweptback wings and slender fuselage extending far forward, it looked like a sinister predator poised to strike.” He recalled that “for many peoples, the color white symbolizes death.” An hour later, a loud-speaker began the countdown.

The white bomber. Source.

The white bomber. Source.

Sakharov described the test in vivid detail:

This time, having studied the Americans’ Black Book4, I did not put on dark goggles: if you remove them after the explosion, your eyes take time to adjust to the glare; if you keep them on, you can’t see much through the dark lenses. Instead, I stood with my back to ground zero and turned around quickly when the building and horizon were illuminated by the flash. I saw a blinding, yellow-white sphere swiftly expand, turn orange in a fraction of a second, then turn bright red and touch the horizon, flattening out at its base. Soon everything was obscured by rising dust which formed an enormous, swirling grey-blue cloud, its surface streaked with fiery crimson flashes. Between the cloud and the swirling durst grew a mushroom stem, even thicker than the one that had formed during the first [1953] thermonuclear test. Shock waves crisscrossed the sky, emitting sporadic milky-white cones and adding to the mushroom image. I felt heat like that from an open furnace on my face — and this was in freezing weather, tens of miles from ground zero. The whole magical spectacle unfolded in complete silence. Several minutes passed, and then all of the sudden the shock wave was coming at us, approaching swiftly, flattening the feather-grass.

“Jump!” I shouted as I leaped from the platform. Everyone followed my example except for my bodyguard (the younger one was on duty that day); he evidently felt he would be abandoning his post if he jumped. The shock wave blasted our ears and battered our bodies, but all of us remained on our feet except for the bodyguard on the platform, who fell and suffered minor bruises. The wave continued on its way, and we heard the crash of broken glass. Zeldovich raced over to me, shouting: “It worked! It worked! Everything worked!” Then he threw his arms around me. […]

The test crowned years of effort. It opened the way for a whole range of devices with remarkable capabilities, although we still sometimes encountered unexpected difficulties in producing them.

But they soon learned that a bruised bodyguard was the least of the injuries sustained in the test. Scientists and soldiers had been stationed far closer to the blast than Sakharov was. The scientists were fine — they were lying flat on the ground and the blast wave caused them no injury. One of them lost his cool and ran away from the blast, but he was only knocked down by it. But a nearby trench held a platoon of soldiers, and the trench collapsed. One young soldier, in his first year of service, was killed.

RDS-37 detonation

RDS-37, detonating. This is considerably sped up; it shows about 50 seconds of footage compressed into only a few seconds. Video source here.

There was also a nearby settlement of civilians affected by the blast wave. In theory it was at a distance remote enough to avoid anything serious; this had been calculated. But the aforementioned inversion layer reflected the shock wave back down to Earth with unusual vehemence — underscoring how even a little misunderstanding of the physics can translate into real problems when you are talking about millions of tons of TNT (something learned by the US a year earlier, at the Castle Bravo test). The inhabitants of the town were in a primitive bomb shelter. After the flash, they exited to see the cloud. Inside the shelter, however, was left a two-year-old girl, playing with blocks. The shock wave, arriving well after the flash, collapsed the shelter, killing the child.

The ceiling of a woman’s ward of a hospital in another nearby village collapsed, seriously injuring many people. Glass windows broke at a meat-packing plant a hundred miles from the test site, sprinkling ground beef with splinters. Windows broke throughout the town where Sakharov was stationed.

RDS-37, seen from a local town. Also sped up. Same source as the previous.

“The consequences of an explosion are hard to predict,” Sakharov concluded.

Had we been more experienced, the temperature inversion would have caused us to delay the test. The velocity of the shock wave increases as the temperature does: if the air temperature rises with altitude, the shock wave bends back towards the ground and does not dissipate as fast under normal conditions. This was the reason the shock wave’s force exceeded our predictions. Casualties might have been avoided if the test had been conducted as scheduled on November 20, when there was no temperature inversion.

As with Castle Bravo, there was a grim, almost literary connection between technical success and human disaster. They had shown the way forward for deployable, multi-megaton hydrogen bombs, but with a real cost — and that cost only an insignificant hint of what would happen if the weapons were used in war. Sakharov concluded:

We were stirred up, but not just with the exhilaration that comes with a job well done. For my part, I experienced a range of contradictory sentiments, perhaps chief among them a fear that this newly released force could slip out of control and lead to unimaginable disasters. The accident reports, and especially the deaths of the little girl and the soldier, heightened my sense of foreboding. I did not hold myself personally responsible for their deaths, but I could not escape a feeling of complicity.

That night, the scientists, the politicians, and the military men dined well. Brandy was poured. Sakharov was asked to give the first toast. “May all of our devices explode as successfully as today’s, but always over test sites and never over cities.”

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

Sculpture of Andrei Sakharov by Peter Shapiro, outside the Russia House Club & Restaurant on Connecticut Ave in Washington, DC. Image source.

The immediate response was silence. Such things were not to be said. One of the military higher-ups flashed a crooked grin, and stood to give his own toast. “Let me tell a parable. An old man wearing only a shirt was praying before an icon. ‘Guide me, harden me. Guide me, harden me.’ His wife, who was lying on the stove, said: ‘Just pray to be hard, old man, I can guide it myself.’ Let’s drink to getting hard.

Sakharov blanched at the crudity (“half lewd, half blasphemous”), and its serious implications. “The point of his story,” he later wrote, “was clear enough. We, the inventors, scientists, engineers, and craftsmen, had created a terrible weapon, the most terrible weapon in human history; but its use would lie entirely outside our control. The people at the top of the Party and military hierarchy would make the decisions. Of course, I knew this already — I wasn’t that naive. But understanding something in an abstract way is different from feeling it with your whole being, like the reality of life and death. The ideas and emotions kindled at that moment have not diminished to this day, and they completely altered my thinking.”

  1. The Soviets tested their first thermonuclear bomb in 1953, the RDS-6s, which used fusion reactions. But it was not a true, multi-megaton capable hydrogen bomb. The 1953 device was “just” a very, very big boosted bomb, where 40 kilotons of fissioning produced 80 kilotons of fusioning which in turn produced another 280 kilotons of fissioning, for 400 kilotons total. The design could not be scaled up arbitrarily, though, and it did not use radiation implosion (like the Teller-Ulam design, known in the USSR as the “Third Idea.” It was a big bomb, but the 1955 test was the design that became the basis for their future nuclear warheads. []
  2. Andrei Sakharov, Memoirs, trans. Richard Lourie (New York: Knopf, 1990), 188-196. []
  3. David Holloway, Stalin and the bomb: The Soviet Union and atomic energy, 1939- 1956 (New Haven: Yale University Press, 1994), 314-316. []
  4. From elsewhere in the Memoirs, it seems that Sakharov may be referring here to the 1950 edition of Samuel Glasstone’s The Effects of Atomic Weapons. There was a hardcover edition that apparently had a black cover. Sakharov notes that the nick-name only “partly” came from the cover; he implies that the contents are “black” as well. However there is nothing about goggles or glare in the version of the text I have, so maybe it is something different. []
Redactions

Conant’s war: Inside the Mouse-Trap

by Alex Wellerstein, published January 17th, 2014

I’ve started teaching my “Science and the Cold War” course again, this time in the History Department at Georgetown University.1 The course starts with World War I and goes all the way through the early 1990s — quite a whirlwind tour of how science, technology, and the state got to be so seriously intermingled. On Tuesday I gave a lecture that forced me to go over some material I hadn’t thought about for awhile: what James B. Conant did during the war. No, not the war you’re probably thinking about.

James B. Conant (fourth from left) at a meeting with Uranium Committee principles, March 1940. Left to right: Ernest O. Lawrence, Arthur C. Compton, Vannevar Bush, Conant, Karl Compton, Alfred L. Loomis.

James B. Conant (fourth from left) at a meeting with Uranium Committee principles, March 1940. Left to right: Ernest O. Lawrence, Arthur C. Compton, Vannevar Bush, Conant, Karl Compton, Alfred L. Loomis.

James B. Conant’s wartime work is usually thought of as being part of the Second World War, but what I’m interested here is what he did during the First. During World War II, Conant was part of the scientist-administrator cabal that launched the National Defense Research Committee, the Office of Scientific Research and Development, and the Manhattan Project. He was Vannevar Bush’s right hand man, an interested, similarly-thinking scientist who tried to take the long view of things. And as President of Harvard since 1933, he commanded a lot of academic clout. He was at the Trinity test. He and Bush bent Roosevelt’s ear about making the bomb, and later trying to control it.

But Conant’s work during World War I is in some ways even more interesting, especially in that it gives an eerie prelude of things to come. I only learned about it while preparing for this class the first time around, reading James G. Hershberg’s authoritative biography, James B. Conant: Harvard to Hiroshima and the Making of the Nuclear Age (Knopf, 1993). Everything I know about Conant comes from Hershberg; if you’re interested in more, check out the book.

Conant longed to be a Harvard man. He got his B.A. there in 1914, and his Ph.D. in 1917, both in chemistry. He longed to stay. (He ended up marrying the daughter of one of the more senior professors there, potentially for careerist reasons, Hershberg hints.) But unlike many in the Yard, when war broke out in Europe, he tried to stay neutral — he brooked no anti-German sentiment, even though reports of German “atrocities” in Belgium, even after the use of chemical gas at Ypres in 1915, even after the Lusitania. Harvard itself became very politicized, mostly against the Germans.

Revenge of the Nerds: James Conant, 1921. That's right — four years after World War I ended, he still looked like an alter boy. Source: Harvard University Archives.

Revenge of the Nerds: James Conant, 1921. Don’t let the “innocent geek” look fool you — the guy could cook up some nasty brews. Source: Harvard University Archives.

What Conant did realize, though, was that there might be money to be made. With the war came shortages of organic chemicals. With shortages came the possibility of profiteering for a chemist like Conant. So Conant and two of his college friends tried to create their own little “start-up” to manufacture several key, in-demand chemicals. They bought a “shack” in Queens, and set it up to produce benzoic acid (a food preservative). It promptly burned down. Undeterred, they rented at a new location in Newark — an abandoned slaughterhouse.

Conant then received a sudden offer to teach back at Harvard. Conant promptly raced back to Cambridge — this was what he really wanted more than anything else. His company in Newark (“Aromatic Chemical”) got set up without him. And on the first production day, in November 1916… the building exploded. Which killed one Conant’s college buddies and two of the staff they had hired. (The other college buddy was merely “blown off of a ladder” and had his face and eyes scorched by corrosive chemicals, leading to only temporary blindness.)

"WAS REALLY GREAT PLAYER."

Poor Stan Pennock — “WAS REALLY GREAT PLAYER,” but was not so great chemist. Boston Daily Globe, November 29, 1916.

The 23-year-old Conant felt terrible. He blamed himself for not helping set up the plant better. Conant the social-climber managed to have his name kept out of newspaper accounts, but his dabbling in war profiteering was over. At the same time, his dabbling in war was now beginning.

By 1917, Conant’s initial skepticism of the war had faded. Unrestricted submarine warfare, the Zimmerman telegram revelation, and no doubt the fact that US entry seemed unavoidable seems to have swayed his feelings. In late March 1917 he looked for a foot-hold into the war, even though he thought of himself as a pacifist. (His one major regret at the time was that it was threatening to derail his perfect Harvard career, right when he got his foot in the door.) He ended up doing something he knew well — making chemicals. Nasty chemicals.

Fritz Haber at Ypres, 1915. (Haber is the one pointing.)

Fritz Haber at Ypres, 1915. Haber is the one pointing; chlorine gas vials sit before him.

Chlorine gas had been used first by the Germans at Ypres in 1915. Fritz Haber, one of the great chemists of the 20th-century, personally oversaw the first use. It killed a lot of Frenchmen, but didn’t get the Germans any ground, since the German troops were not exactly eager to march into trenches where gas still lingered. Still, the propaganda effect was huge — and the outcry even huger. The French and the British went from protesting the German use to developing gas masks and their own offensive chemicals. The number of agents rapidly grew, from chlorine to phosgene, from that to mustard gas. The gas didn’t end up giving anyone a major tactical advantage, though — it just became another way to make war hell.

The US was late to the chemical game, just as it was late to the war. Even though gas warfare had become a major component of the war after 1915, the US government made only feeble efforts to reach out to chemists on the issue. By the time they entered the war in 1917, they still had no gas masks, no offensive gases of their own, and no training of troops in gas procedures. They sent out an emergency plea to chemists, and to the American Chemical Society, to get them up to speed.

Mustard gas, the most noxious of the German gases, is what pushed Conant towards chemical warfare more than anything else. He talked to a colleague at MIT who set him up at American University, in Washington, DC, as a group leader for the sprawling American chemical weapons effort. At American University, there were some 60 campus buildings dedicated to chemical weapons issues, employing some 1,700 chemists, testing some 1,600 compounds on animals. In September 1917, Conant became the head of Organic Research Unit #1. His job was to make the US capable of mustard gas production — within a year it was producing 30 tons a day. Conant was hardly alone in this — it seems that practically the entire Harvard chemistry department got involved in this effort. Conant himself received a lieutenant’s commission for the job, though he later remarked that: “We were not soldiers. We were chemists dressed as officers.”

British football/soccer team in gas masks, 1916.

British football/soccer team in gas masks, 1916.

Conant drove his team hard, and was noticed for it. He moved from mustard gas to a new assignment — a nasty chemical called Lewisite, an arsenic-based compound that was advertised by Harper’s Monthly as some 72X more deadly than any other gas developed during the war (modern classifications seem to put it at only 3X more deadly than mustard gas2), but unlike mustard gas it was very acute in its effects and dissipated quickly, allowing it to be considered for offensive maneuvers.

An article in Harper’s Monthly from 19193 has one of the more florid descriptions of Lewisite that I’ve come across:

Lewisite is described as “an oily liquid of an amber color and the odor of geranium blossoms.” It is highly explosive, and on contact with water it bursts into flame. Let loose in the open air, it diffuses into a gas which kills instantly on the inhalation of the smallest amount that can by any means be measured. A single drop of the liquid on the hand causes death in a few hours, the victim dying in fearful agony. The pain on contact is acute and almost unendurable. It acts by penetrating through the skin or, in the gaseous form, through the lung tissue, poisoning the blood, affecting in turn the kidneys, the lung tissue, and the heart.

Lewisite identification poster from World War II.

Lewisite identification poster from World War II. Are geraniums one of those common smells that everyone knows?

The plant to make Lewisite was located in Willoughby, Ohio, a suburb of Cleveland. It was apparently referred to the people who worked there as “the mouse-trap.” Harper’s explained the name:

Men who went in never came out until the war was over; each of the eight hundred workers signed an agreement of voluntary imprisonment before going to work. They could write letters, but could give no address but that of a locked box in the Cleveland post-office… The hours were long, the work hard, the risk tremendous. But in spite of the frightfully poisonous nature of the stuff they were making, not a man was poisoned; the only death in the plant was from influenza. To protect the men while at work there was devised a mask and overall suit that rendered them absolutely immune. Masks that gave full protection against the most powerful German gases were useless against Lewisite.

Conant at Mouse-Trap, 1918. Source: Daily Boston Globe, May 27, 1933.

Conant at Mouse-Trap, 1918. Source: Daily Boston Globe, May 27, 1933.

Conant’s group at American University helped devise the process by which Lewisite would be manufactured. He was promoted to major and sent to Cleveland to supervise the production of the gas, officially code-named G-34, at the “Mouse-Trap” facility. The facility practiced strict compartmentalization. Conant was one of the few who knew the whole story of what they were making, and he was the top technical man at the plant. He worked around the clock and gained a reputation for easy leadership — a must for people working under those conditions. He wanted to make Lewisite because he hoped it would be “the great American gas which would win the war.

The facility was a commandeered automobile factory, and was under strict guard. Conant’s only address was Lock Drawer 426, Cleveland. I don’t know if it was really a “voluntary imprisonment” situation — that sounds possibly exaggerated, though perhaps not — but it was high security. By the end of the war the plant was producing 10 tons of Lewisite a day, ready to be shipped to Europe to be packed into artillery shells. Harper’s claimed that “half a dozen 300-pound bombs of Lewisite, exploded windward of the city of Berlin, would have killed the entire population of the German capital.” Furthermore, they reported that the preferred method for this kind of delivery was via an “automatic airplane” — a drone.

But Lewisite was never used in battle. The war ended too soon. The US stockpile of Lewisite, save for a few small samples kept for future research, was loaded onto a boat in barrels at Baltimore, taken 50 miles offshore, and sunk into the deep.

Time Magazine - James Conant

It’s hard to not see so many interesting parallels here with the atomic bomb. The eventual call of the scientists to war. The race towards a new weapon that will “win the war” — no matter how destructive. The transformation of university campuses into laboratories for weapons of mass destruction. The creation of new, top-secret facilities where compartmentalization, isolation, and secrecy rule the day. And the fact that it’s Conant resonates too. Conant was one of the earliest scientists in the uranium work to call for compartmentalization, one of the first to call for creating an isolated laboratory (Los Alamos). It’s hard not to see Conant’s lessons of World War I affecting his approach to the bomb situation in World War II. It wasn’t his first rodeo.

In 1927, Conant took his first trip to Germany. He held no ill-will towards the Germans for the First World War. While there, he met none other than Fritz Haber, who was then 60 years old. No one knows exactly what the talked about, but apparently it included both politics and, well, oxidation. Conant’s only note on Haber was that “he paid me the greatest compliment an older man can pay a younger; he listened when I spoke.”

Haber’s story ended up much more sadly than Conant’s. Haber died while being exiled from his country, a hero turned into a martyr by a government that could not tolerate the fact that he had been born a Jew. Conant went on to be President of Harvard for 20 years, to help reform the American academy, to help make the atomic bomb, and, much later, to be the US Ambassador to West Germany. It’s fascinating that these two chemical weapons pioneers — one of whom became a nuclear weapon pioneer — managed to intersect, if only briefly.

James Conant, President of Harvard, 1933. Source: Harvard University Archives.

James Conant, President of Harvard, 1933. Source: Harvard University Archives.

Conant apparently had no moral scruples with working on toxic gas. Which perhaps isn’t that surprising. The Germans used it first, after all, and it had quickly become “the norm” in the First World War. His most toxic work, in any case, was never used against anybody. The fact that his “government work” came after a shameful failure probably made it feel redeeming, as well. More generally, he wrote in the late-1960s that:

I did not see in 1917, and I do not see in 1968, why tearing a man’s guts out by a high-explosive shell is to be preferred to maiming him by attacking his lungs or his skin. All war is immoral. Logically, the 100 percent pacifist has the only impregnable position. Once that is abandoned, as it is when a nation becomes a belligerent, one can talk sensibly only in terms of the violation of agreements about the way war is conducted, or the consequences of a certain tactic or weapon.

It’s a legitimate stance, and one taken by a lot of scientists who have worked on WMDs. But it seems like kind of a cop-out to me. There are better and worse ways to wage war. Both ethically, from the point of view of who gets killed and how they get killed, but also from the standpoint of achieving practical ends that you can live with in the peacetime. If one declares that the only options are pacifism or “anything goes,” one slides down a pretty nasty slope awfully quickly. One gets what Conant is trying to indicate — that war itself is the problem, not the means — but saying that the means are just details of immorality seems to be just a bit too dismissive for me. Nations that decide that the methods of war are just practical details become the stuff of nightmares.

  1. It is not a permanent gig, before anyone congratulates me on landing a new job! Just a temporary thing. []
  2. See, e.g., the LD50 doses for Sulfur Mustard (mustard gas) and Lewisite. []
  3. Frank Parker Stockbridge, “War Inventions That Came Too Late,” Harper’s Monthly (November 1919), 828-835. []
Redactions

Nuclear history bibliography, 2013

by Alex Wellerstein, published January 6th, 2014

It’s that time again. With the New Year comes new lists, and like I did last year, I’ve tried to put together a bibliography of nuclear history scholarship that was published over the course of the year. All of the same caveats about completeness and inclusion apply — it has to be something primarily about the past, it has to be more or less a work of “history” relating to nuclear technology (I’ve left out a lot of quantitative political science because while it can be quite interesting, I’m not sure it is history), and it had to have been published in 2013. I haven’t tried to track down chapters in books (sorry) or most web-only content (which means I’ve omitted the great stuff on Able Archer 83 that the National Security Archive published, but such is life).

"Any books on atomic power?" From the New York Times Book Review, November 18, 1945.

“Any books on atomic power?” New York Times Book Review, November 18, 1945.

Looking at the list, I don’t see any obvious trends from the titles alone. Last year was the anniversary of the Cuban Missile Crisis, so that was the one obvious trend there. This year, I don’t see anything that stands out (other than sampling issues like the fact that the Bulletin of the Atomic Scientists ran an issue on nuclear culture).

I‘m sure there is much missing — so please leave me a note below in the comments section, or send me an e-mail, if you know of something that might belong here, and if I think it meets my (somewhat loose) criteria I’ll add it to the list.

As an aside, it would be great if other scholars out there would produce similar lists for their own sub-fields! It takes a lot less time than one might imagine (hooray for academic search engines), and is a great way to get a quick survey of all of those things that you didn’t know you had missed.

Read the full post »

Redactions

The year of the disappearing websites

by Alex Wellerstein, published December 27th, 2013

I’m a big fan of digital historical research. Which is to say, I’ve benefited a lot from the fact that there are a lot of great online resources for primary source work in nuclear history. These aren’t overly-curated, no-surprises resources. The paper I gave at the last History of Science Society meeting, on US interest in 50-100 megaton weapons, was surprising to pretty much everyone I told about it, yet was based almost exclusively on documents I found in online databases. You can do serious research with these, above and beyond merely “augmenting” traditional archival practices.1

One of the most interesting documents I found in an online database — an estimate for the ease of developing a 100 megaton weapon in a letter from Glenn Seaborg to Robert McNamara. Knowing the estimated yield and weight of the bombs in question allows one to divine a lot of information about their comparative sophistication.

One of the most interesting documents I found in an online database — an estimate for the ease of developing a 100 megaton weapon in a letter from Glenn Seaborg to Robert McNamara. Knowing the estimated yield and weight of the bombs in question allows one to divine a lot of information about their comparative sophistication.

Like all things, digital history comes with its pitfalls. The completely obvious one is that not everything is digitized. No surprise there. That doesn’t really change the digital archival experience from the physical one, of course, since even physical archives always are missing huge chunks of the documentation. As with “regular” archives, the researcher compensates for this by looking at many such databases, and by looking closely at the materials for references to missing documents (e.g. “In response to your letter of March 5” indicates there ought to be a letter from March 5th somewhere). This doesn’t make digital archives less useful, it just means their role cannot usually be absolute. Being able to quickly search said databases usually more than compensates for this problem, of course, since the volume of material that can be looked at quickly is so much higher than with physical paper. And I might note that one of the best part about many of the digital archives for nuclear sources is that the documents often indicate their originating archive — which can point you to sources you might not have considered (like off-the-beaten-trail National Archives facilities).

But perhaps the biggest problem with digital sources, though, is that like so many things in the digital world, they somehow have the ability to vanish completely when you really want or need them. (As opposed to the normal online trend of things sticking around forever when you wish they would go away.) The fall of 2013 was, among other things, the season of the disappearing websites. At least three major web databases of nuclear history resources that I used on a regular basis silently disappeared.

Fallout from the 1952 "Ivy Mike" shot of the first hydrogen bomb. Note that this is actually the "back" of the fallout plume (the wind was blowing it north over open sea), and they didn't have any kind of radiological monitoring set up to see how far it went. As a result, this makes it look far more local than it was in reality. This is from a report I had originally found in the Marshall Islands database.

Fallout from the 1952 “Ivy Mike” shot of the first hydrogen bomb. Note that this is actually the “back” of the fallout plume (the wind was blowing it north over open sea), and they didn’t have any kind of radiological monitoring set up to see how far it went. As a result, this makes it look far more local than it was in reality. This is from a report I had originally found in the Marshall Islands database.

The first of these, I believe (it is hard to know exactly when things vanished as opposed to when I became aware of them — in this case, September 2013) was the DOE’s Marshall Islands Document Collection. This was an impressive collection of military and civilian reports and correspondence relating primarily to US nuclear testing in the Pacific. Its provenance isn’t completely clear, but it probably came out of the work done in the mid-1990s to compensate victims of US atmospheric testing.

I found this database incredibly useful for my creation of NUKEMAP’s fallout coding. It also had lots of information on high yield testing in general, and lots of miscellaneous documents that touched on all matter of US nuclear developments through the 1960s. It used to be at this URL, which now re-directs you to a generic DOE page. I e-mailed the webmaster and was told that it isn’t really gone per se, it’s just that “Access to the HSS website has been disabled for individuals trying to access our website from the public facing side of the internet. We are working to put mitigation in place that will allow us to enable public access to our web site.” Which was several months ago, right before the government shutdown. What I fear, here, is that a temporary technical disabling of the site — because they are re-shuffling around things on their web domains, as government agencies often do — will lead to nobody ever getting it back up again.

A photograph of an early Hanford reactor that used to be in the Hanford DDRS — one of my favorites, both because of its impressive communication of activity and scale.

A photograph of an early Hanford reactor that used to be in the Hanford DDRS — one of my favorites, both because of its impressive communication of activity and scale.

Next was the Hanford Declassified Document Retrieval System which in November 2013 (or so) went offline. It used to be here, which now gives a generic “not found” message. It used to have thousands of documents and photographs relating to the Hanford Site spanning the entire history of its operation. In my research, I used it extensively for its collection of Manhattan Project security records, as well as its amazing photographs. Again, I suspect it was a creation of the mid-to-late 1990s, when “Openness” was still a thing at DOE.

I’d be the first to admit that its technical setup seemed a little shaky. It required a clunky Java applet to view the files, and its search capabilities left a little to be desired. Still, it worked, and could be actively used for research. I got in contact with someone over there, who said it had to be taken down because it had security vulnerabilities, and that eventually they planned to get it back up again, but that “we don’t have a timeline for accomplishing that right now.” They offered to search the database for me, through queries sent via e-mail, but obviously that doesn’t quite cut it in terms of accessibility (especially since my database process involves many, many queries and glancing at many, many documents, most of which are irrelevant to what I’m looking for).

Will it get back up? The guy I talked to at Hanford said they were trying to resurrect it. But I have to admit, I’m a little skeptical. It’s not at the top of their agenda, and clearly hasn’t been for over a decade. If they do get it up, I’ll be thrilled.

d: Exploratory tunnel dug by a 25-foot-diameter tunnel boring machine at the proposed  Yucca Mountain, Nevada, repository for spent nuclear fuel. From the DOE Digital Archive.

Exploratory tunnel dug by a 25-foot-diameter tunnel boring machine at the proposed
Yucca Mountain, Nevada, repository for spent nuclear fuel. From the DOE Digital Photo Archive.

Lastly, there is the DOE Digital Photo Archive, which was a publicly-accessible database of DOE photographs, from the Manhattan Project through the present. Some of these were quite stunning, and quite rare. One of my all-time favorite photographs of the nuclear age came from this database. The archive used to be here, it now redirects to a generic page about e-mailing the DOE for photographs. Not the same thing. I got in touch with someone who worked there, who said that the database site “has been closed down,” and that instead I could trawl through their Flickr feed. They, too, offered to help me find anything I couldn’t — but that doesn’t actually help me too much, given how much serendipity and judgment play in archival practice.

As an extra “bonus” lost website, Los Alamos‘ pretty-good-but-not-perfect history website was also taken down very recently, and replaced with a single, corporate-ish page that skips from World War II to the present in one impressive leap and gives nothing but a feel-good account of the first atomic bombs. The site it replaced was more nuanced, had a reasonably good collection of documents and photographs, and covered Los Alamos’ history through the Cold War pretty well. It had its issues, to be sure, including some technical bugs. But even a buggy site is better than a dead one, in my opinion. A new site is supposedly in the works, but it seems to not be a high priority and no short-term changes are expected.

None of these sites were taken down because of anything objectionable about their content, so far as I know. The issues cited have been a mixture of technical and financial (which are, of course, intertwined). Websites require maintenance. They require upkeep. They require keeping technically-inclined people on staff, with part of their day devoted to putting out the little fires that inevitably come up over the years with a long-lasting website. Databases and interactive sites in particular require considerable effort to put together, and a lot of time over the years to keep up to date in terms of security practices.

I work on web development, so I get all that. Still, it’s a terrible thing when these things just vanish. Aside from that fact that some people (I imagine more than just myself) find them useful, the amount of resources essentially wasted when such a long-term investment (think of the man-hours that went into populating those databases!) is simply turned off.

What should scholars do about it? We can complain, and sometimes that works. A better solution, perhaps, is to keep better mirrors of the sites in question. This is particularly true of sites with any potential “national security implications.” When Los Alamos took their declassified reports offline after 9/11, the Federation of American Scientists managed to cobble together a fairly complete mirror. (The Los Alamos reports have since been quietly reinstated for public access through the Los Alamos library site.)

Los Alamos Technical Reports

I wish, in retrospect, that in the past I had considered the possibility that the Hanford and Marshall Islands databases might go down. Making a mirror of a database is harder than making a mirror of a static website, but it’s not impossible. (Archive.org does not do it, before you offer that possibility up.) For the specific reports, documents, and photographs that I actually use in my work, I always have a local copy saved. But there is so much out there that was yet to be found. I might try filing a FOIA request for the underlying data (it would be trivial for me to turn them into a useful database hosted on my own servers), but I’m not sure how well that will work out (it seems to go a bit beyond a normal FOIA).

After the Hanford database went down, I thought, what are the other public databases that my work depends on? The most important is DOE’s OpenNet database, which contains an incredibly rich (if somewhat idiosyncratic) collection of documents related to nuclear weapons development. Huge chunks of my dissertation were based on records found through it, as are most of the talks I give. If it went down tomorrow, I’d be pretty sunk. For that reason, while the government was going through its shutdown last October (I figured no one would be around to object), I made a reasonably complete duplicate of everything in OpenNet using what is known as a “scraper” script.2 Obviously as OpenNet gets updated, my database will fall out of sync, but it’s a start, and it’s better than nothing if it gets unplugged tomorrow.

The amazing thing about digital databases it that they take the archive everywhere at once, instantly. The terrible thing about them is that it only takes the pull of one plug to shut it down everywhere at once, instantly. Anyone who does research on nuclear history issues should be deeply disturbed by this rash of site closures, and should start thinking seriously about how to make copies of government databases they rely on. (Private databases are more complicated, for copyright reasons.) The government gave, and the government has taken away.

  1. Which databases, you ask? 1. The CIA’s online FOIA database; 2. Gale’s DDRS database; 3. the DOD’s online FOIA database; 4. DTIC; 5. ProQuest’s Congressional hearing database; 6. the JFK Library’s online files; 7. the National Security Archive’s online database; 8. the Nuclear Testing Archive (DOE OpenNet); 9. the OHP Marshall Islands Database; 10. the ProQuest Historical Newspaper database; 11. the UN’s website; 12. the searchable Foreign Relations of the United States. The only other significant non-online archival sources were the Hansen papers at the National Security Archive and some files from the JFK Library that they provided me over e-mail. []
  2. I whipped something together using Snoopy for PHP, which allows you to do all sorts of clever database queries very easily. []
Meditations

Kilotons per kilogram

by Alex Wellerstein, published December 23rd, 2013

Nuclear weapons can be made to have pretty much as much of a bang as one wants to make them, but with increased explosive yield comes an increased weapon weight. We always talk vaguely about being able to make H-bombs to arbitrarily high yields, but recently I’ve been mulling over this fact somewhat quantitatively. I gave a talk last month at the History of Science Society Meeting on US interest in 50-100 MT bombs around the time of the Limited Test Ban Treaty, and while working on this paper I got  slightly obsessed with what is known as the yield-to-weight ratio.

Little Boy — a big bang compared to a conventional bomb, but still a very crude nuclear bomb.

Little Boy — a big bang compared to a conventional bomb, but still a very crude nuclear bomb.

What makes nuclear weapons impressive and terrible is that their default yield-to-weight ratio — that is, the amount of bang per mass, usually expressed in terms of kilotons per kilogram (kt/kg) — is much, much higher than conventional explosives. Take TNT for example. A ton of TNT weighs, well, a ton. By definition. So that’s 0.001 kilotons per 1,000 kilograms; or 0.000001 kt/kg. By comparison, even a crude weapon like the Little Boy bomb that was dropped on Hiroshima was about 15 kilotons in a 4,400 kg package: 0.003 kt/kg. That means that the Little Boy bomb had an energy density three orders of magnitude higher than a regular TNT bomb would. Now, TNT isn’t the be-all and end-all of conventional explosives, but no conventional explosive gets that much boom for its buck compared to a nuke.

The Little Boy yield is much lower than the hypothetical energy density of uranium-235. For every kilogram of uranium-235 that completely fissions, it releases about 17 kt/kg. That means that less than a kilogram of uranium-235 fissioned in the Little Boy bomb to release its 15 kilotons of energy. Knowing that there was 64 kg of uranium in the bomb, that means that something like 1.3% of the uranium in the weapon actually underwent fission. So right off the bat, one could intuit that this is something that could probably be improved upon.

Fat Man — a lot better use of fissile material than Little Boy, but no more efficient in terms of yield-to-weight.

Fat Man — a lot better use of fissile material than Little Boy, but no more efficient in terms of yield-to-weight.

The Fat Man bomb had a much better use of fissile material than Little Boy. Its yield wasn’t that much better (around 20 kilotons), but it managed to squeeze that (literally) out of only 6.2 kilograms of plutonium-239. Pu-239 releases around 19 kilotons per kilogram that completely fissions, so that means that around 15% of the Fat Man core (a little under 1 kg of plutonium) underwent fission. But the bomb itself still weighed 4,700 kg, making its yield-to-weight ratio a mere 0.004 kt/kg. Why, despite the improve efficiency and more advanced design of Fat Man, was the yield ratio almost identical to Little Boy? Because in order to get that 1 kg of fissioning, it required a very heavy apparatus. The explosive lenses weighed something like 2,400 kilograms just by themselves. The depleted uranium tamper that held the core together and reflected neutrons added another 120 kilograms.  The aluminum sphere that held the whole apparatus together weighed 520 kilograms. The ballistic case (a necessary thing for any actual weapon!) weighed another 1,400 kg or so. All of these things were necessary to make the bomb either work, or be a droppable bomb.

So it’s unsurprising to learn that improving yield-to-weight ratios was a high order of business in the postwar nuclear program. Thermonuclear fusion ups the ante quite a bit. Lithium-deuteride (LiD), the most common and usable fusion fuel, yields 50 kilotons for every kilogram that undergoes fusion — so fusion is nearly 3 times more energetic per weight than fission. So the more fusion you add to a weapon, the better the yield-to-weight ratio, excepting for the fact that all fusion weapons require a fission primary and usually also have very heavy tampers.

I took all of the reported American nuclear weapon weights and yields from Carey Sublette’s always-useful website, put them into the statistical analysis program R, and created this semi-crazy-looking graph of American yield-to-weight ratios:

Yield-to-weight ratios of US nuclear weapons

The horizontal (x) axis is the yield in kilotons (on a logarithmic scale), the vertical (y) axis is the weight in kilograms (also on a log scale). In choosing which of the weights and yields to use, I’ve always picked the lowest listed weights and the highest listed yields — because I’m interested in the optimal state of the art. The individual scatter points represent models of weapons. The size of each point represents how many of them were produced; the color of them represents when they were first deployed. Those with crosses over them are still in the stockpile. The diagonal lines indicate specific yield-to-weight ratio regions.

A few points of interest here. You can see Little Boy (Mk-1), Fat Man (Mk-3), and the postwar Fat Man improvements (Mk-4 — same weight, bigger yield) at the upper left, between 0.01 kt/kg and 0.001 kt/kg. This is a nice benchmark for fairly inefficient fission weapons. At upper right, you can see the cluster of the first H-bomb designs (TX-16, EC-17, Mk-17, EC-24, Mk-24) — high yield (hence far to the right), but very heavy (hence very high). Again, a good benchmark for first generation high-yield thermonuclear weapons.

What a chart like this lets you do, then, is start to think in a really visual and somewhat quantitative way about the sophistication of late nuclear weapon designs. You can see quite readily, for example, that radical reductions in weight, like the sort required to make small tactical nuclear weapons, generally results in a real decrease in efficiency. Those are the weapons in the lower left corner, pretty much the only weapons in the Little Boy/Fat Man efficiency range (or worse). One can also see that there are a few general trends in design development over time if one looks at how the colors trend.

First there is a movement down and to the right (less weight, more yield — improved fission bombs); there is also a movement sharply up and to the right (high weight, very high yield — thermonuclear weapons) which then moves down and to the left again (high yield, lower weight — improved thermonuclear weapons). There is also the splinter of low-weight, low-yield tactical weapons as well that jots off to the lower left. In the middle-right is what appears to be a sophisticated “sweet spot,” the place where all US weapons currently in the stockpile end up, in the 0.1-3 kt/kg range, especially the 2-3 kt/kg range:

Yield-to-weight ratios -- trends

These are the bombs like the W-76 or the B-61 — bombs with “medium” yield warheads (100s rather than 1,000s of kilotons) in relatively low weight packages (100s rather than 1000s of kilograms). These are the weapons take advantage of the fact that they are expected to be relatively accurate (and thus don’t need to be in the multi-megaton range to have strategic implications), along with what are apparently sophisticated thermonuclear design tricks (like spherical secondaries) to squeeze a lot of energy out of what is a relatively small amount of material. Take the W-76 for example: its manages to get 100 kilotons of yield out of 164 kilograms. If we assume that it is a 50/50 fission to fusion ratio, that means that it manages to fully fission about 5 kilograms of fissionable material, and to fully fuse about 2 kilograms of fusionable material. And it takes just 157 kg of other apparatus (and unfissioned or unfused material) to produce that result — which is just a little more than Shaquille O’Neal weighs.

Such weapons aren’t the most efficient. Weapon designer Theodore Taylor wrote in 1987 that 6 kiloton/kilogram had been pretty much the upper limit of what had even been achieved.1 Only a handful of weapons got close to that. The most efficient weapon in the US stockpile was the Mk-41, a ridiculously high yield weapon (25 megatons) that made up for its weight with a lot of fusion energy.

The components of the B-61 nuclear weapon — the warhead is the bullet-shape in the mid-left. The B-61 was designed for flexibility, not miniaturization, but it's still impressive that it could get 20X the Hiroshima bomb's output out of that garbage-can sized warhead.

The components of the B-61 nuclear weapon — the warhead is the bullet-shape in the mid-left. The B-61 was designed for flexibility, not miniaturization, but it’s still impressive that it could get 20X the Hiroshima bomb’s output out of that garbage-can sized warhead.

But given that high efficiency is tied to high yields — and relatively high weights — it’s clear that the innovations that allowed for the placing of warheads on MIRVed, submarine-launched platforms are still pretty impressive. The really magical range seems to be for weapons that in the hundred kiloton range (more than 100 kilotons but under a megaton), yet under 1,000 kilograms. Every one of those dates from after 1962, and probably involves the real breakthroughs in warhead design that were first used with the Operation Dominic  test series (1962). This is the kind of strategic miniaturization that makes war planners happy.

What’s the payoff of thinking about these kinds of numbers? One is that it allows you to see where innovations have been made, even if you know nothing about how the weapon works. In other words, yield-to-weight ratios can provide a heuristic for making sense of nuclear design sophistication, comparing developments over time without caring about the guts of the weapon itself. It also allows you to make cross-national comparisons in the same fashion. The French nuclear arsenal apparently developed weapons in that same miniaturized yield-to-weight range of the United States by the 1970s — apparently with some help from the United States — and so we can probably assume that they know whatever the United States figured out about miniaturized H-bomb design in the 1960s.

The Tsar Bomba: a whole lot of boom, but a whole lot of weight. The US thought they could make the same amount of boom for half the weight.

The Tsar Bomba: a whole lot of boom, but a whole lot of weight. The US thought they could make the same amount of boom for half the weight.

Or, to take another tack, and returning to the initial impetus for me looking at this topic, we know that the famous “Tsar Bomba” of the Soviet Union weighed 27,000 kilograms and had a maximum yield of 100 Mt, giving it a yield-to-weight ratio of “only” 3.43 kilotons/kilograms. That’s pretty high, but not for a weapon that used so much fusion energy. It was clear to the Atomic Energy Commission that the Soviets had just scaled up a traditional H-bomb design and had not developed any new tricks. By contrast, the US was confident in 1961 that they could make a 100 Mt weapon that weighed around 13,600 kg (30,000 lb) — an impressive 7.35 kiloton/kilogram ratio, something well above the 6 kt/kg achieved maximum. By 1962, after the Dominic series, they thought they might be able to pull off 50 Mt in only a 4,500 kg (10,000 lb) package — a kind of ridiculous 11 kt/kg ratio. (In this estimate, they noted that the weapon might have an impractically large diameter as a result, perhaps because the secondary was spherical as opposed to cylindrical.) So we can see, without really knowing much about the US had in mind, that it was planning something very, very different from what the Soviets set off.

It’s this black box approach that I find so interesting about these ratios. It’s a crude tool, to be sure, but a tool nonetheless. By looking at the broad trends, we get insights into the specifics, and peel back the veil just a tiny bit.

  1. Theodore B. Taylor, “Third Generation Nuclear Weapons,” Scientific American 256, No. 4 (April 1987), 30-39, on 34: “The yield-to-weight ratios of pure fission warheads have ranged from a low of about .0005 kiloton per kilogram to a high of about .1 kiloton per kilogram. […] The overall yield-to-weight ratio of strategic thermonuclear warheads has been as high as about six kilotons per kilogram. Although the maximum theoretical ratios are 17 and 50 kilotons per kilogram respectively for fission and fusion reactions, the maximum yield-to-weight ratio for U.S. weapons has probably come close to the practical limit owing to various unavoidable inefficiencies in nuclear weapon design (primarily arising from the fact that it is impossible to keep the weapon from disintegrating before complete fission or fusion of the nuclear explosive has taken place.” []