Redactions

Bringing Fermi in on the Bomb (1943)

by Alex Wellerstein, published July 4th, 2012

Enrico Fermi was one of the main players in the Manhattan Project. Arguably he, even more than J. Robert Oppenheimer, could be considered the true “father of the bomb.” His work on slow neutrons drastically opened up the field of nuclear research in the 1930s, and it was these experiments which eventually led the way to Hahn, Meitner, et. al’s discovery of fission. No slouch, Fermi built the world’s first nuclear reactor, CP-1, and then went on to Los Alamos to play a key role in the development of the bomb itself. He was part of the Scientific Panel which advised that the first use of the bomb in war should be on an inhabited city. There was scarcely an aspect of the bomb’s development that Fermi didn’t have a hand in as a theorist, as an experimentalist, or as an advisor.

Enrico Fermi in Rome, mid-1930s — splitting atoms, taking names.

With such a pedigree, it can be hard to imagine that anyone ever doubted including Fermi in the Manhattan Project. But he was, you will remember, a citizen of an Axis power, Italy. True, he was one who fled Mussolini (in 1938, after receiving his Nobel Prize in Stockholm), but a citizen nonetheless. He didn’t become a naturalized U.S. citizen until 1944, well after he had begun his work on the bomb. In the early years, Fermi was, in the technical parlance, an “enemy alien.”

Fermi as alien, as featured in the new comic series, Manhattan Projects. More on this on Friday.

In the very early years of the bomb work, Vannevar Bush was unsure about bringing Fermi in. It wasn’t that Bush doubted Fermi’s loyalties — I think it would seem pretty clear that Fermi was no Fascist spy — but it wasn’t clear what the military brass would say. “The Army is going to talk about the case of Fermi… [and] I am sitting tight until I hear about these conversations. …in the interim we are not giving him information.”1 It required “a good deal of protest” for the Army to finally clear Fermi, and only on a very small part of the work being done at Columbia, and in a subordinate role. “I am not at all sure that the Army would reverse its point of view on this matter where an Italian citizen is concerned,” Bush wrote in the summer of 1941.2

Through at least the summer of 1941, both Fermi and Szilard — enemy aliens highly-connected to the project — were not even allowed to travel freely within the United States! They had 90-day permits that let them travel to specific cities (Fermi could go to New York; Washington, DC; Chicago; Beverly, Mass.; and Princeton, N.J., and that’s it), and that had to be renewed when it ran out. Arthur Compton thought this was pretty ridiculous as far as situations went; but James Conant didn’t want to push it.

Eventually Bush got around to getting Fermi full clearance, full freedom of action. Interestingly it came right at the Manhattan Project itself was ramping up, in late 1942. Fermi was one of the odd cases that Bush used to justify the need for the uranium work to have its own security system, independent of the Army and the Navy, who balked at clearing such people. (Oppenheimer and Arthur Compton were two others that he thought they’d have trouble clearing — not because of where they were from, but where they had signed their names, over the years.)

In 1943, Fermi was finally able to be fully brought in. The independence of Groves’ organization allowed him to do things that Bush’s OSRD found much more difficult. This week’s document is a letter from J. Robert Oppenheimer to Enrico Fermi, inviting the latter (who was at the Chicago Metallurgical Laboratory) to travel to Los Alamos in order to attend a three-week series of lectures on bomb design. These lectures would be later compiled into the Los Alamos Primer.3

Click for the PDF.

The main paragraph of the letter reads:

We are planning to hold a three-week conference at Los Alamos, starting probably about April 15. The purpose of the conference is to discuss the scientific problems of the Los Alamos laboratory and to define its schedules and its detailed experimental program. The background of our work is so complicated, and information in the past has been so highly compartmentalized, that it seems that we shall have a good deal to gain from a leisurely and thorough discussion. My own view is that this is likely to contribute essentially toward our carrying out our directive in the simplest and fastest way. I want very much to have you present at the conference, whether or not you will have moved permanently to the site by that time.

It’s interesting, here, that the Primer conference was in part seen as an antidote to compartmentalization. Los Alamos was originally to be as compartmentalized as the rest of the project, but Oppenheimer and others insisted that it be a bastion of scientific interchange. Within its walls, the cleared scientists could discuss problems with other cleared scientists, even if they weren’t always working on the same problems. The consequence of this, from Groves’ perspective, was that Los Alamos had to be walled off from the other sites completely — information could be sent to Los Alamos, but the flow was generally not supposed to go the other direction.

The rest of the letter continues to explain that Los Alamos is still be assembled, and that the living arrangements weren’t quite worked out. It was an understatement — Los Alamos was famous for being a mud pit of prefabricated housing during the war years.

It seems that by this point, Fermi was more or less given carte blanche — except, of course, that because he was so important to the project, he was disallowed from flying and had to have a bodyguard/chauffeur at all times. His wife, Laura, recounted later that:

The rules General Groves had set could have been chosen by a wise mother for her teen-age daughter. Enrico was not to walk by himself in the evening, nor was he to drive without escort to the newly built Argonne Laboratory twenty miles from our home.4

Even in 1944, however, Manhattan Project officials worried that Fermi might want to return to Italy after the war — with their secrets. It didn’t happen.

One wonders if, had the suspicion and paranoia gotten their way, and all people of German, Hungarian, or Italian descent had been cut out of the bomb project, whether it would have worked. Personally, I doubt it. Cut out Fermi, Bethe, Szilard, Teller, Wigner, Segrè, and Fuchs (yes, even Fuchs, who, for all his spying, was actually an important contributor)  and you end up with quite a gutted Los Alamos.

It would have been a curious irony if, having fled Fascism in Europe, they found themselves too suspicious to employ in the United States.

  1. Vannevar Bush to Carroll Wilson (30 September 1940), Bush-Conant File Relating the Development of the Atomic Bomb, 1940-1945, Records of the Office of Scientific Research and Development, RG 227, microfilm publication M1392, National Archives and Records Administration, Washington, D.C., n.d. (ca. 1990), Roll 2, Target 4, Folder 9, “S-1 British Relations Prior to Interim Committee [Fldr.] No. 1 [1942].” []
  2. Vannevar Bush to Frank B. Jewett (9 July 1941), Bush-Conant File Relating the Development of the Atomic Bomb, 1940-1945, Records of the Office of Scientific Research and Development, RG 227, microfilm publication M1392, National Archives and Records Administration, Washington, D.C., n.d. (ca. 1990), Roll 8, Target 7, Folder 91, “J (1941-44).” []
  3. J. Robert Oppenheimer to Enrico Fermi (11 March 1943), via the Los Alamos National Laboratory website. []
  4. Laura Fermi, Atoms in the family: My life with Enrico Fermi (Los Angeles, Calif.: Tomash Publishers, 1987 [1954]), 212. []
Meditations

Nuclear This, That, and “Them”

by Alex Wellerstein, published July 2nd, 2012

I’ve just returned to (broiling) DC from the annual meeting of the Society for Historians of American Foreign Relations (SHAFR, variously pronounced “shafe-er” or “shaffer”). Diplomatic historians are a sartorially conservative bunch — much more so than historians of science, who are still far, far more conservative than science studies people — so it highly amusing that the convention center was also host to a meeting of ministers wives and widows (almost entirely African-American, by contrast to the mostly-white SHAFR crowd) and an exhibition of body builders. So the line at the convention center Starbucks would be three fairly dull looking historians (full suit, etc.), two ministers’ wives/widows (fantastic dresses, impressive hats, enormous broaches), and at least one leathery-skinned, overly-tanned, veins-bulging guy or gal wearing workout clothes. A fun mix. I should have taken a picture.

My talk was part of a two-panel series titled “After the Nuclear Revolution.” (Revolutions were part of the conference theme.) The papers actually marched quite interestingly along chronologically. On the my panel were (in order of presentation) Mary McPartland, a grad student at GWU, myself, and Mara Drogan, a recent Ph.D. recipient from the University of Albany (SUNY), who was the one who organized the two panels.

Mary’s paper was about Farm Hall, the English country house where ten German scientists were detained for six  months (July 1945 to early January 1946). In particular, Mary used Farm Hall as a way to explore the immediate postwar nuclear relationship between the US and the UK (problematic to the point of eventual collapse), and their lack of clear understanding as to what they were meant to do with German nuclear scientists in the postwar period.

Three of the Farm Hall heavies: Werner Heisenberg, Otto Hahn, and Kurt Diebner. The British Farm Hall report noted that Hahn was the “most friendly” of the group, that Heisenberg was “genuinely anxious to cooperate with British and American scientists,” and that Diebner was “outwardly friendly but has an unpleasant personality and cannot be trusted.”

The Americans didn’t want to use (or, in their terminology, “exploit”) the German physicists for their own programs (they didn’t trust them, and they didn’t think they knew that much, after all — compare this with their attitude towards the rocket scientists), but they didn’t want them going over to the Soviet Union, either. They also didn’t want the new German states to suddenly have access to nuclear technology, either. At one point someone apparently joked about just executing them, though it isn’t clear that was ever really floated as a realistic option. The UK, on the other hand, had already promised the scientists they’d let them go fairly soon after the war had ended, and eventually that’s what happened.

My paper picked up, chronologically, and looked at efforts to reform secrecy during the U.S. Atomic Energy Commission under David Lilienthal’s chairmanship. There is an apparent paradox in the fact that Lilienthal saw himself an ardent foe of secrecy, yet some of the worst abuses of secrecy (e.g. hiding the plutonium injection experiments) took place under his watch and often with his explicit approval.

AEC Chief David Lilienthal (center) between a rock (Sen. Tom Conally, left) and a hard place (Sen. Brien McMahon, right). You can see the stress on Lilienthal’s face: this is from an emergency AEC-JCAE meeting to discuss the recent arrest of Klaus Fuchs. From the Library of Congress.

The answer to this little riddle is that the early AEC, despite its far-reaching powers, was actually quite weak when it came to the DC political ecosystem — it had no natural political allies except, perhaps, the not-very-well-organized scientists, but they were such a contrarian (and otherwise disconnected) lot that they proved quite unreliable. In an effort to protect the AEC from scandal — and thus perhaps lead to its dissolution in favor of military control — Lilienthal was willing to use secrecy as a weapon for the “ultimate good.” His very idealism (in favor of civilian control) became his worst enemy when it came to actually reducing secrecy (because it proved too tempting).

Mara‘s paper was about Eisenhower’s Atoms for Peace program. Specifically, Mara looked at the ways in which the desires to push “peaceful” atomic power by officials in the State Department and the White House were out of sync with the technical assessments by the Atomic Energy Commission, and the consequences of this difference. Exporting power reactors was a key feature of Eisenhower’s proposal, but it wasn’t seen as a good idea by the AEC — as one member of the National Security Council put it, “before the Council decides upon such a course, it should be aware that it is doing so for psychological reasons alone, and that there are risks, costs, and other problems (such as site selection) involved.”

Whaley-Eaton Service Atoms for Peace letterhead, from 1956.

One of the most interesting parts of Mara’s paper related to the issue of proliferation. The US of course somewhat dodged the issue in the 1950s, despite the fact that it was sending reactors and expertise worldwide. Internally, the AEC recognized the issue, that “nearly all of the reactors which today appear economically promising for power generation will produce fissionable material in the course of their operation… in significant amounts.” Publicly, they were required to be silent. In 1954, though, Soviet foreign minister Vyacheslav Molotov confronted John Foster Dulles on the issue, asking, “What do you Americans think you’re doing proposing to spread stockpiles of bomb-grade material all over the world under the Atoms for Peace?” Dulles said he was sure that wasn’t the case — but after checking back with his staff, found that Molotov had been better briefed on the issue than he had.

Our commentator, Princeton’s Michael Gordin (whose work I have previously praised), poked at our papers in variously interesting ways. One thing he did ask was where the Soviets were in any of them — and suggested that their apparent absence was because they just didn’t appear in the documents, which itself seems somewhat paradoxical given the Cold War context of all of this.

I noted that in the area of classification matters, for the early AEC, the Soviets were more of an abstract entity than a specific concern. Part of this is because until the detection of the first Soviet test, the US didn’t really know much of anything about the Soviet atomic program. They were almost totally in the dark, lacking either human intelligence (e.g. defectors or spies) or technical intelligence (the fallout monitoring became the first real blow at this; there was also, of course, VENONA, but that was just getting under way, and not shared with the AEC).

The Soviets, when referred to, were often just mentioned as “the enemy,” and sometimes, even more cryptically, as them.” Everyone knew who “them” was, of course — it was the leitmotif of their efforts — but they knew so little about “them” that it never got much more specific than that. After the detection of the first atomic test (September 1949), and the confessions of Klaus Fuchs (February 1950), there was some effort made to revise the classification system on the basis of what was apparently already known to the Soviets (e.g. plutonium implosion, which was something that not only was verifiable with the technical intelligence, but was explicitly something Fuchs told them about), but it didn’t add up to much change. It’s always easier to be conservative with secrecy policies than liberal with them — a fact which does not seem to have changed, as our own, current President, who rode in on a promise of greater transparency, seems to have fully embraced the “national security state” mentality that he inherited. (A depressing but, again, not surprising fact.)

Read the full post »

Visions

Atomic Editorial Cartoons (August 1945)

by Alex Wellerstein, published June 29th, 2012

The American public reaction to the first atomic bombs was a mixture of exaltation and ambivalence — a relief that science appeared to be a possible deus ex machina that would end the terrible war, an ambivalence about the question as to the morality of the weapon and its implications for what wars in the future would look like. Spencer Weart’s Rise of Nuclear Fear does a great job of talking about that ambivalence, as does the work of the late Paul S. Boyer, By the Bomb’s Early Light.

There are lots of ways to probe that ambivalence. One interesting way is through the genre of editorial cartoons, which can boil down popular political opinions quite succinctly. I’ve used ProQuest to conjure up quite a few cartoons from August 1945, looking at the holdings of the Atlanta Constitution, Chicago Tribune, Los Angeles Times, and the New York Times.

There aren’t as many as you might think — just a little over twenty total for those four papers. Here are a few of the most interesting ones, in order of date.

August 7

Los Angeles Times, August 7, 1945

This was the first one I found. Not a whole lot of content here other than the obvious excitement at the idea of a weapon of such tremendous power. Interesting that the clock motif dates from so early!

August 8

Atlanta Constitution, August 8, 1945

This one is fairly well-known — it makes quite a lot of light out of killing a lot of Japanese. Again, exhaultation and exuberance.

Chicago Tribune, August 8, 1945

The Chicago Tribune produced quite a number of these cartoons, and theirs were often pretty explicitly racist. This one also goes a bit beyond the other two so far in that it’s actually making an argument: the bombs were justified because of Pearl Harbor. To consider the bombs in need of justification of this sort, even at this early stage, is a nice sign of the aforementioned ambivalence.

Chicago Tribune, August 8, 1945

Another from the Chicago Tribune, this one more explicitly ambivalent about what the bomb means for the future. Gotta love the depiction of the long-haired scientist

August 9

Chicago Tribune, August 9, 1945

Hoo-boy — a lot of cultural baggage here! It’s easy to mock the “magic electron” bit, but more reflectively, it’s a sign at how brand-new the scientific terminology would have been to your average journalist, much less layperson. Some information on the science of the bomb had been released to the media this point in conjunction with the publicity efforts, but this is still well before the Smyth Report was released, so some scientific illiteracy isn’t too surprising.

Los Angeles Times, August 9, 1945

The only cartoon I found which makes any reference to the Soviet invasion of Manchuria, which begun on August 9 (the same day as Nagasaki).

August 10

Los Angeles Times, August 10, 1945

Another exultant — and racist — cartoon.

August 11

Chicago Tribune, August 11, 1945

Another science-themed cartoon (from the same artist as the earlier one), but this time a lot less ambivalent.

August 12, 1945

Chicago Tribune, August 12, 1945

Ah, now here’s some of the hard-core ambivalence setting in. Will the crater of the first atomic bomb be the grave of “warfare” or of “civilization”? Note this is the first one with any kind of mushroom cloud, as well. The Smyth Report had been made available to the press on the evening of August 11 (for release on August 12), so it’s possible that the author here had access to slightly more detailed materials on the subject than those previously.

Newark Evening News, reprinted in the New York Times, August 12, 1945

New York Times, August 12, 1945

St. Louis Post-Dispatch, reprinted in the New York Times, August 12, 1945

On August 12, the New York Times print three comics on the subject of the bomb, at least two of which were originally printed elsewhere. The first is mostly positive — the atom will end war. The second is far ambivalent — humanity is but an infant preparing to play with life and death. And the third is, in my reading anyway, hard to parse. Is the new era a good thing? I’m not really sure how to interpret a giant hand jamming a lightning bolts into the planet — a good thing? A bad thing? A very awkward metaphor?

Chicago Tribune, August 12, 1945

This one is just… very odd. I guess it is supposed to be the Japanese Army using Hirohito as its face-saving surrender, because of the bomb? Hm. Not exactly a well-executed message in my view. But check out that dove with an atom bomb strapped to it:

That’s wild.

August 13

Chicago Tribune, August 13, 1945

One thing to note with both this and the most recent comic is their confidence that the war would be ending soon. This was still a few days before the Japanese capitulation — which was not entirely expected. One wonders how the view of the bomb would have changed if Japan hadn’t surrendered and the invasion had begun as planned.

August 14

Chicago Tribune, August 14, 1945

Another justifying cartoon from the Chicago Tribune. I’ve gotta say — I feel a little sorry for Japan in this one. I think the cartoon unintentionally makes them look like the underdogs.

There are a few more in here that I’m skipping, just for space and because they weren’t that interesting. The next one sums up the message of quite a few of them:

Atlanta Constitution, August 20, 1945

Now we’ve really entered into the hand-wringing, what-about-the-UN, can-we-have-atomic-peace stage of things. Clichés abound.

And thus we slide — from the exultation of the bomb towards the “what next?” phase of things. The connection between the explicit racism and the heavy exultation isn’t one that I’d really noticed quite so vividly before — it’s the sort of thing that might be read between the lines of written articles or editorials, but becomes quite obvious when it is being illustrated.

I want to add just one more cartoon here — one which is only tangentially related to the bomb:

Chicago Tribune, August 24, 1945

One could make the argument that this connection between pesticides and WMDs is non-coincidental (the connection between chemical warfare and pesticides is pretty clear-cut), but what I find striking about this particular cartoon is the fact that in many ways it is deeper than it intended to be. Just like the atomic bomb, DDT was initially celebrated by many (most?) — but we’ve now replaced that excitation with at the very least ambivalence, if not abhorrence.

Redactions

Bethe on SUNSHINE and Fallout (1954)

by Alex Wellerstein, published June 27th, 2012

Project SUNSHINE definitely takes the prize for “most intentionally-misleading title of a government program.” The goal of SUNSHINE (co-sponsored by the Atomic Energy Commission and RAND) was to figure out what the impact radioactive fallout from American nuclear testing was on the world population. The initial study was started in 1953, and involved checking biological material for the the radioactive fission product Strontium-90, with an attempt to correlate Sr-90 levels with various known nuclear test series. Not exactly what you think of when you hear the term “sunshine,” eh?

It actually gets much creepier than just the confusing name. The “biological material” they were studying was, well, dead organic matter. What kind of organic matter, specifically? The dataset for a “pre-pilot” study on Strontium-90 intake, was a real witches brew:

  • “Wisconsin cheese (1 month old)”
  • “clam shells (Long Island)”
  • “Wisconsin cat bone”
  • “Montana cat (6 months, fed on milk from free-range cows)”
  • “stillborn, full term baby (Chicago)”
  • “rib from a Harvard man” 

Pardon me while I count my ribs… and cats… and… well… yuck. You can’t make this stuff up. Well, I can’t, anyway. Here’s your creepy meeting transcript of the week, from the planning of SUNSHINE: “Dr. Libby commented on the difficulty of obtaining human samples, and suggested that stillborn babies, which are often turned over to the physician for disposal, might be a practical source.”1

As an aside to an aside, in the full study, they did use samples from corpses — corpses of children in particular seemed of particular interest — in getting their data. It’s a bit gory to read through their data sets as they describe the Sr-90 they found in the ribs or vertebrae of the dead. US scientist Shields Warren in particular seemed to have quite a lot of access to the bones of young children through the Cancer Research Institute in Boston, Massachusetts. Not a job I’d envy.2

Anyway — the document I wanted to share had nothing to do with the sample sources, but I got a little distracted while poking around in the SUNSHINE literature, and couldn’t not pass that on.

Hans Bethe and W.F. Libby

The letter in question comes from 1954, after SUNSHINE had been completed. It’s a request from December 1954 from the well-coifed Hans Bethe to the aforementioned Willard F. Libby, the physical chemist best known as the inventor of radiocarbon dating (for which he would win a Nobel Prize, in 1960), and in 1954 one of the five Commissioners of the AEC.3 In the letter, Bethe is arguing in favor of SUNSHINE’s declassification — and his justifications are not necessarily what you might expect.4

Click to view PDF (yes, it’s in color!)

Bethe started out by noting that even in the summer of 1953, when SUNSHINE was being finished up, they (it seems that Bethe and Libby were both there) thought that it would “be highly desirable to declassify a large part of project SUNSHINE.” Bethe thought the matter has gotten rather urgent:

I still feel the same way about this, and I think the arguments for declassification have become far stronger than they were in 1953. There is real unrest both in this country and abroad concerning the long-range as well as short-range radioactivity, and it would, in my opinion, greatly allay the fears of the public if the truth were published.

There’s the kicker: Bethe was convinced that SUNSHINE will show that fallout from testing isn’t as big a problem as people thought it was. Releasing SUNSHINE wouldn’t be a matter of propaganda (and holding it back wasn’t a matter of covering it up), in Bethe’s mind — it would simply be getting the facts out.

And why might people suddenly be getting concerned about nuclear fallout?

Map showing points (X) where contaminated fish were caught or where the sea was found to be excessively radioactive, following the Castle Bravo nuclear test.

No doubt because of all of the attention that the Castle BRAVO nuclear test had gotten with respects to high amounts of fallout finding its way into all sorts of biological systems far from its source — like the radioactive tuna that was caught for weeks afterwards off the waters of Japan.

Bethe understood, though, that the classification reasons holding back the publication of SUNSHINE were non-trivial. SUNSHINE studies the deposition of fission products following testing, and to make much sense of that, you had to know the fission yields from the tests. If you knew the fission yields, you’d know quite a lot about American nuclear weapons — especially if you knew the fission yield of the Ivy MIKE test, the first H-bomb.

Why? Because knowing the fission component of the first H-bomb test would possibly give away all sorts of information about the Teller-Ulam design. Multi-stage H-bombs have a reasonably large fission trigger that ignites the fusion fuel, which then again induces more fission in a “natural” uranium tamper. In the case of MIKE, 77% of the total 10.4 megaton yield came from the final fission stage. Knowing that would be a good hint as to the composition of the American H-bombs, and was not something they wanted to share with the USSR.

But Bethe thought you could get around this:

I believe the story of SUNSHINE could be published without giving away any information about our H-bombs: it is merely necessary to put the permissible accumulated yield in terms of fission yield rather than total yield.

In other words, if you just talked of fission yield — and didn’t give the total yield — you wouldn’t be able to figure out how much of the yield was not fission, and thus the high disparity (which would be a big red flag for a weapons designer) would be hidden.

Bethe also thought that they should publish the fallout data from the H-bomb tests (likely including those from the CASTLE series). Bethe didn’t think that information would give away any design information, but it was clear that others were suspicious. Bethe put the question to a test: he asked Philip Morrison to try and figure out how an H-bomb worked from just published stories about the Castle BRAVO fallout accident.

A youngish Philip Morrison, courtesy of the Emilio Segrè Visual Archives.

Morrison at that point had no access to classified information. He had been part of the Manhattan Project, and so knew quite a bit about fission weapons, but had been cut out of the classified world by the time the H-bomb had come along. (More on Morrison’s security clearance another time — lots of interesting stories there.)

Morrison’s conclusions (oddly title “FISSION ENERGY IN IVY,” even though it was about BRAVO) are attached to Bethe’s letter. In many ways it is an analysis typical of a somewhat cocky physicist: things are described as “easy” and conclusions are lead to “clearly” and everything is stated as if it is pretty obvious and pretty straightforward. Morrison concludes that the total fission yield of BRAVO (again, misidentified as IVY) is between 0.2Mt and 0.6Mt, and that most of the fission must have been from the fission primary that started the reactions. In reality, 10Mt of the 15Mt total yield was from fission, which is why it was such a “dirty” shot.

Bethe took this as evidence that indeed, looking at just the fallout alone, you couldn’t figure out how much of the explosion was from fission yield, and thus the design information was safe: “As Morrison’s report shows, it seems to be easy to draw entirely wrong conclusions from the fall-out data.”

Why Morrison got this wrong is a little mysterious to me. Ralph Lapp had managed to conclude, more or less correctly, that there was a third “dirty” fission stage, and had popularized the idea enough that it trickled into  Life magazine in December 1955. But Bethe thought Morrison’s analysis was more or less sound, given his lack of detailed information. It’s a weird thing to conclude, based on one study, that some piece of information is fundamentally unknowable, when you already know what the piece of information is.

Life magazine, 1955: not quite right, not entirely wrong.

Speaking of speculating based on missing information, part of Bethe’s letter is redacted, for reasons I do not know. His conclusion makes it pretty clear it has to do with this absolute vs. fission yield/fallout issue, though.

Bethe concludes: “I believe it would greatly improve international feeling about our Pacific tests if we were to publish the correct story of SUNSHINE and of fall-out.”

Libby would come around to Bethe’s position and push for declassification. In Libby’s mind, like Bethe’s, SUNSHINE showed that the world wasn’t going to become mutated just because of a little testing in the Pacific. Furthermore, he also came to believe that you could shut down a lot of the anti-nuclear testing demands by just showing people that you were paying close attention to this sort of thing — by the time of Operation Redwing (1956), he felt that this sort of disclosure had already made the international community more friendly to US testing.

It wasn’t until 1956 that the declassification eventually occurred, however, and even then, a lot of things were removed. (The “Amended*” in the RAND report cover page above is because it was “Amended to remove classified data; otherwise the report remains unchanged and represents the 1953 estimate of the fallout problem.”) Of course, by that point it was clear that the Soviets had already figured out how to make an H-bomb work.


Also! I will be giving a talk this Friday at the annual meeting of the Society for Historians of American Foreign Relations (SHAFR) in Hartford, CT. Just putting that out there.

  1. Minutes of the 36th Meeting of the General Advisory Committee to the U.S. Atomic Energy Commission (17, 18, and 19 August 1953), copy in the OHP Marshall Islands Document Collection. []
  2. E.g. E.A. Martell, “Strontium-90 Concentration Data for Biological Materials, Soils, Waters and Air Filters,” Project Sunshine Bulletin No. 12, [AECU-3297(Rev.)], (1 August 1956); human bone data listings start on page 29. []
  3. Libby was also the husband of Leona Woods, which I didn’t realize. Marshall was the only woman who had a role in the development of CP-1, the first nuclear reactor, and stands out quite conspicuously in the Met Lab photographs. []
  4. Citation: Hans Bethe to W.F. Libby (17 December 1954), copy in Nuclear Testing Archive, Las Vegas, NV, document NV0032161. []
Meditations

More on Centrifuge History

by Alex Wellerstein, published June 25th, 2012

I wrote about centrifuges a few weeks ago, and have learned some new, interesting things since then. John Krige, a professor at the History, Technology, and Society program at Georgia Tech, has two quite provocative articles  published about interactions between the US and the UK regarding centrifuges in the mid-to-late 1960s. They are worth your attention.

European centrifuges (URENCO)

Krige’s first article is “Hybrid knowledge: the transnational co-production of the gas centrifuge for uranium enrichment in the 1960s,” just published online (and forthcoming in print, I believe) in the British Journal for the History of Science (BJHS).1 As the title may tip you off, this is an article for a primarily history of science/science studies crowd, and speaks in that idiom. Don’t let the jargon scare you off, though: as far as the genre goes, it’s readable and the underlying point is an important one. It concerns the interchanges of centrifuge information between the US and the UK in the early 1960s, which were done under the 1955 US/UK Agreement for Co-operation on the Civil Uses of Atomic Energy, and their consequences when the UK, Netherlands, and Germany decided to go into a cooperative, profitable effort to produce a commercial centrifuge enrichment plant in 1967. (What eventually became URENCO, I believe.)

The US thought this was a somewhat dodgy enterprise — they really didn’t think centrifuges would be as profitable as gaseous diffusion, their chosen enrichment method, but the UK disagreed — but were happy to support it, so long as the UK didn’t give away any “restricted data” that had been produced by the US. And there’s the rub: the UK and US had been exchanging information for a long time, and the UK really thought that it had produced a completely indigenous design (taking off from Gernot Zippe’s unclassified contributions) without any significant US “data” in it. The US disagreed and threatened to cut off all future US-UK exchanges if the latter didn’t let them verify to their satisfaction that there wasn’t any US data in the design. The UK, for its part, thought that it had a really superior centrifuge design compared to the US, and were worried that if the US claimed parts of it were “theirs,” it would completely muddy up their attempts to get clear of the US monopoly on the enrichment of uranium.

In the end, the US decided the UK design was kosher enough, and all was well with them. But it’s a fascinating (and to me, totally unknown) episode in the US-UK “special (nuclear) relationship,” one which really highlights some fundamentally interesting aspects of both US and UK atomic policy, and the fundamentally transnational (as Krige puts it) nature of modern centrifuge development (an Austrian working in the USSR develops technology that he then further works on in the US and the UK which is then turned into a company with the UK, Germany, and Netherlands, etc.). It also gets into some good history of science questions about how one identifies the source of any given piece of design or machinery — and how difficult that can be.

US centrifuges (Piketon)

The second paper by John is “The Proliferation Risks of Gas Centrifuge Enrichment at the Dawn of the NPT: Shedding Light on the Negotiating History,” just published online (and imminently forthcoming in print) in The Nonproliferation Review.2 This essay was a winner of an annual prize by the journal (one of two) and John gave a presentation on it last Thursday at GWU (which you can watch online — John is the first of the two speakers/winners, after the introduction by Stephen Schwartz).

In this paper, John tackles the question of the apparent ambiguity in the 1968 Nuclear Non-Proliferation Treaty (NPT) about whether centrifuge-style enrichment activities (like that currently pursued by Iran) were considered a protected form of “peaceful use” to be allowed and encouraged. It has been speculated that at the time of the treaty’s writing, the risks posed by centrifuge enrichment — which is a lot smaller scale than gaseous diffusion plants, and thus easier to hide or protect — weren’t considered by the NPT drafters, and thus represent an unanticipated “loophole” in the treaty terms.

What John has found is that while centrifuges were not discussed in the official record, they were discussed extensively on the backchannel by the US and the UK. In particular, the UK was extremely worried about the proliferation potential for the gas centrifuge. They, after all, were pursuing the technology themselves, and knew it could be a potent game-changer in breaking the gaseous diffusion monopoly. They wondered if it would not be the angle pursued by a future proliferating state, and conveyed as much to the US.

The US was itself comparatively unworried. It thought that it (and its European allies) could control the spread of centrifuge technology through classification and export controls, and still were dubious that the centrifuge would play a bit role in world affairs anytime soon. I pushed John on this at the talk (you can hear me asking a rambling question about this at the 1:41:24 mark in the video linked above), and he elaborated in a way that I thought was more compelling: the US was weary about getting the treaty signed (they had finally gotten the Soviets on board, and the NPT treaty process was over a decade old at that point), and were worried that any attempt to modify the treaty at that point would bog it down for years to come. Furthermore, the UK was engaging in said partnership with the Dutch and the West Germans, and the US really wanted to make sure the Germans were still on board with the NPT.

(The West Germans were really not too pleased with the NPT and it was a huge hassle to get them to ratify it; like many nations, they appropriately saw it as an infringement on their national sovereignty and their future security options. Of course today the Germans are big supporters of the NPT — it’s interesting how these things switch around, depending on where you are sitting at the time.)

The UK didn’t push the matter, because it didn’t want to rankle the treaty process, either, and because it too wanted to profit off of the centrifuge. So both the US and UK let the matter slide. (I think John’s work highlights something that I’ve been thinking for a short while now: there’s a lot of potential for a “deep” history of the NPT, one that goes beyond the open record.)

Iranian centrifuges (Natanz)

Whether this affects one’s interpretations of the NPT today — John thinks that there is basically no real legal argument against Iran being able to develop centrifuges, and certainly no argument that the early NPT drafters had left an unanticipated “loophole” in place that anyone is taking advantage of — seems to me, someone not at all versed in international law, to be unclear. (Do off-the-record conversations between two parties count towards later interpretations of a treaty’s intent?) But either way, it’s a fascinating story. The apparent US lack of concern about specifically centrifuge proliferation has come back to haunt it, these decades later.

  1. John Krige, “Hybrid knowledge: the transnational co-production of the gas centrifuge for uranium enrichment in the 1960s,” BJHS (online May 2012). []
  2. John Krige, “The Proliferation Risks of Gas Centrifuge Enrichment at the Dawn of the NPT: Shedding Light on the Negotiating History,” The Nonproliferation Review 19, no. 2 (July 2012), 219-227. []