Posts Tagged ‘1970s’

Meditations

A brief history of the nuclear triad

Friday, July 15th, 2016

Summers for me are paradoxically the time I can get work done, and the time in which I feel I have the most work. I’m not teaching, which in theory means I have much more unstructured time. The consequence, though, is that I have about a million projects I am trying to get done in what is still a limited amount of time, and I’m also trying to see family, friends, and get a little rest. I sort of took June off from blogging (which I felt was my due after the amount of exposure I got in April and May), but I have several posts “in the hopper,” and several other things coming out soon. Yesterday I gave a talk at the US Department of State as part of their Timbie Forum (what used to be called their Generation Prague conference). I was tasked with providing the historical background on the US nuclear “triad,” as part of a panel discussion of the future of the triad. This is subject-matter I’ve taught before, so I felt pretty comfortable with it, but I thought I would return to a few of my favorite sources and refresh my understanding. This post is something of a write-up of my notes — more than I could say in a 20-minute talk.

There is a lot of buzzing about lately about the future of the United States' "nuclear triad." The triad is the strategic reliance on three specific delivery "platforms" for deterrence: manned-bombers (the B-2 and the B-52), long-range intercontinental ballistic missiles (ICBMs; specifically the Minuteman III), and submarine-launched ballistic missiles (SLBMs; specifically the Trident II missile carried by Ohio class submarines). Do we need all three "legs" of the triad? I don't know — that's a question for another day, and depends on how you balance the specific benefits and risks of each "leg" with the costs of maintaining or upgrading them. But as we think about the future of the US arsenal, looking at how the triad situation came about, and how people started talking about it as a "triad," offers some interesting food for thought.

The modern nuclear triad. Source: Nuclear Posture Review, 2010.

The modern nuclear triad. Source: Nuclear Posture Review, 2010.

The stated logic of the triad has long as such: 1) bombers are flexible in terms of their armaments and deployments (and have non-nuclear roles); 2) ICBM forces are kept far from the enemy, are highly-accurate, and thus make a first-strike attack require a huge amount of "investment" to contemplate; 3) SLBM forces are, for the near term, capable of being kept completely hidden from attack, and thus are a guaranteed "second strike" capability. The combination of these three factors, the logic goes, keeps anyone from thinking they could get away with a nuclear attack.

That’s the rationale. It’s not the history of it, though. Like so many things, the history is rather wooly, full of stops-and-starts, and a spaghetti graph of different organizations, initiatives, committees, industrial contractors, and ideas. I have tried to summarize a lot of material below — with an idea to pointing out how each “leg” of the triad got (or did not get, depending on when) the support it needed to become a reality. I only take these histories up through about 1960, after which each of the three “legs” were deployed (and to try and go much further would result in an even-longer post).

LEG 1: MANNED BOMBERS

The United States’ first approach to the “delivery” question was manned, long-range bombers. Starting with the B-29, which delivered the first atomic bombs, and some 80 million pounds of incendiaries, over Japanese cities during World War II, the US was deeply committed to the use of aircraft as the means of getting the weapons from “here” to “there.” Arguably, this commitment was a bit overextended. Bureaucratic and human factors led to what might be called a US obsession with the bomber. The officers who rose through the ranks of the US Army Air Forces, and the newly-created (in 1947) US Air Force, were primarily bomber men. They came out of a culture that saw pilots as the ultimate embodiment of military prowess. There were some exceptions, but they were rare.

The B-29's power was more than military — it became a symbol of a new form of warfare for the generals of the newly-constituted US Air Force. Source.

The B-29's power was more than military — it became a symbol of a new form of warfare for the generals of the newly-constituted US Air Force. Source.

In their defense, the US had two major advantages over the Soviet Union with respect to bombers. The first is that the US had a lot more experience building them: the B-29 “Superfortress” was an impressive piece of machinery, capable of flying further, faster, and with a higher load of armaments than anything else in the world at the time, and it was just the beginning.

The second was geography. The B-29 had a lot of range, but it wasn’t intercontinental. With a range of some 3,250 miles, it could go pretty far: from the Marianas to anywhere in Japan and back, for example. But it couldn’t fly a bomb-load to Moscow from the United States (not even from Alaska, which was only in range of the eastern half of Russia). This might not look like an advantage, but consider that this same isolation made it very hard for the Soviet Union to use bombers to threaten the United States in the near-term, and that the US had something that the USSR did not: lots of friends near its enemy’s borders.

As early as late August 1945, the United States military planners were contemplating how they could use friendly airfields — some already under US control, some not — to put a ring around the Soviet Union, and to knock it out of commission if need be. In practice, it took several years for this to happen. Deployments of non-nuclear components of nuclear weapons abroad waited until 1948, during the Berlin Blockade, and the early stages of the Korean War.

US nuclear bomber deployments, 1945-1958. One of my favorite slides that I use when teaching — it shows what "containment" comes to mean, and amply demonstrates the geopolitics of Cold War bomber bases.

US nuclear bomber deployments, 1945-1958. One of my favorite slides that I use when teaching — it shows what "containment" comes to mean, and amply demonstrates the geopolitics of Cold War bomber bases. Shadings indicate allies/blocs circa 1958.

In 1951, President Truman authorized small numbers of nuclear weapons (with fissile cores) to be deployed to Guam. But starting in 1954, American nuclear weapons began to be dispersed all-around the Soviet perimeter: French Morocco, Okinawa, and the United Kingdom in 1954; West Germany in 1955; Iwo Jima, Italy, and the Philippines in 1957; and France, Greenland, Spain, South Korea, Taiwan, and Tunisia in 1958. This was “containment” made real, all the more so as the USSR had no similar options in the Western Hemisphere until the Cuban Revolution. (And as my students always remark, this map puts the Cuban Missile Crisis into perspective.)1

And if the B-29 had been impressive, later bombers were even more so. The B-36 held even more promise. Its development had started during World War II, and its ability to extend the United States’ nuclear reach was anticipated as early as 1945. It didn’t end up being deployed until 1948, but added over 700 miles to the range of US strategic forces, and could carry some 50,000 lbs more fuel and armament. The B-52 bomber, still in service, was ready for service by 1955, and extended the range of bombers by another several hundred miles, increased the maximum flight speed by more than 200 miles per hour.2

Plane First flight Introduced in service Combat range (mi) Maximum speed (mph) Service ceiling (ft) Bomb weight (lbs)
B-17 1935 1938 2,000 287 35,600 4,500
B-29 1942 1944  3,250 357  31,850  20,000
B-36 1946 1948  3,985 435  43,000  72,000
B-52 1952 1955  4,480 650  50,000  70,000
B-2 1989 1997  6,000 630  50,000  40,000

So you can see, in a sense, why the US Air Force was so focused on bombers. They worked, they held uniquely American advantages, and you could see how incremental improvement would make them fly faster, farther, and with more weight than before. But there were more than just technical considerations in mind: fascination with the bomber was also cultural. It was also about the implied role of skill and value of control in a human-driven weapon, and it was also about the idea of “brave men” who fly into the face of danger. The bomber pilot was still a “warrior” in the traditional sense, even if his steed was a complicated metal tube flying several miles above the Earth.

LEG 2: LAND-BASED INTERCONTINENTAL BALLISTIC MISSILES (ICBMs)

But it wasn’t just that the USAF was pro-bomber. They were distinctly anti-missile for a long time. Why? The late Thomas Hughes, in his history of Project Atlas, attributes a distinct “conservative momentum, or inertia” to the USAF’s approach to missiles. Long-range missiles would be disruptive to the hierarchy: engineers and scientists would be on top, with no role for pilots in sight. Officers would, in a sense, become de-skilled. And perhaps there was just something not very sporting about lobbing nukes at another country from the other side of the Earth.3

But, to be fair, it wasn’t just the Air Force generals. The scientists of the mid-1940s were not enthusiastic, either. Vannevar Bush told Congress in 1945 that:

There has been a great deal said about a 3,000 mile high-angle rocket. In my opinion such a thing is impossible and will be impossible for many years. The people who have been writing these things that annoy me have been talking about a 3,000 mile high-angle rocket shot from one continent to another carrying an atomic bomb, and so directed as to be a precise weapon which would land on a certain target such as this city. I say technically I don't think anybody in the world knows how to do such a thing, and I feel confident it will not be done for a very long time to come.

Small amounts of money had been doled out to long-range rocket research as early as 1946. The Germans, of course, had done a lot of pioneering work on medium-range missiles, and their experts were duly acquired and re-purposed as part of Operation Paperclip. The Air Force had some interest in missiles, though initially the ones they were more enthusiastic about were what we would call cruise missiles today: planes without pilots. Long-range ballistic missiles were very low on the priority list. As late as 1949 the National Security Council gave ballistic missiles no research priority going forward — bombers got all of it.

Soviet testing of an R-1 (V-2 derivative) rocket at Kapustin Yar. Soviet rocket tests were detected by American radars — and spurred US interest in rockets. Source.

Soviet testing of an R-1 (V-2 derivative) rocket at Kapustin Yar. Soviet rocket tests were detected by American radars — and spurred US interest in rockets. Source.

Real interest in ballistic missiles did not begin until 1950, when intelligence reports gave indication of Soviet interest in the area. Even then, the US Air Force was slow to move — they wanted big results with small investment. And the thing is, rocket science is (still) “rocket science”: it’s very hard, all the more so when it’s never been really done before.

As for the Soviets: while the Soviet Union did not entirely forego research into bombers, the same geographic factors as before encouraged them to look into long-range rockets much earlier than the United States. For the USSR to threaten the USA with bombers would require developing very long-range bombers (because they lacked the ability to put bases on the US perimeter), and contending with the possibility of US early-warning systems and interceptor aircraft. If they could “skip” that phase of things, and jump right to ICBMs, all the better for them. Consequently, Stalin had made missile development a top priority as early as 1946.

It wasn’t until the development of the hydrogen bomb that things started to really change in the United States. With yields in the megaton range, suddenly it didn’t seem to matter as much if you couldn’t get the accuracy that high. You can miss by a lot with a megaton and still destroy a given target. Two American scientists played a big role here in shifting the Air Force’s attitude: Edward Teller and John von Neumann. Both were hawks, both were H-bomb aficionados, and both commanded immense respect from the top Air Force brass. (Unlike, say, J. Robert Oppenheimer, who was pushing instead for tactical weapons that could be wielded by the — gasp — Army.)

Ivy Mike, November 1952. Accuracy becomes less of a problem.

Ivy Mike, November 1952. Accuracy becomes less of a problem.

Teller and von Neumann told the Air Force science board that the time had come to start thinking about long-range missiles — that in the near term, you could fit a 1-2 megatons of explosive power into a 1-ton warhead. This was still pretty ambitious. The US had only just tested its first warhead prototype, Ivy Mike, which was an 80-ton experiment. They had some other designs on the books, but even the smaller weapons tested as part of Operation Castle in 1954 were multi-ton. But it was now very imaginable that further warhead progress would make up that difference. (And, indeed, by 1958 the W49 warhead managed to squeeze 1.44 Mt of blast power into under 1-ton of weight — a yield-to-weight ratio of 1.9 kt/kg.)

The USAF set up an advisory board, headed by von Neumann, with Teller, Hans Bethe, Norris Bradbury, and Herbert York on it. The von Neumann committee concluded that long-range missile development needed to be given higher priority in 1953. Finally, the Department of Defense initiated a full-scale ICBM program — Project Atlas — in 1954.

Even this apparent breakthrough of bureaucratic inertia took some time to really get under way. You can’t just call up a new weapons system from nothing by sheer will alone. As Hughes explains, there were severe doubts about how one might organize such a work. The first instinct of the military was to just order it up the way they would order up a new plane model. But the amount of revolutionary work was too great, and the scientists and advisors running the effort really feared that if you went to a big airplane company like Convair and said, “make me a rocket,” the odds that they’d actually be able to make it work were low. They also didn’t want to assign it to some new laboratory run by the government, which they felt would be unlikely to be able to handle the large-scale production issues. Instead, they sought a different approach: contract out individual “systems” of the missile (guidance, fuel, etc.), and have an overall contractor manage all of the systems. This took some serious effort to get the DOD and Air Force to accept, but in the end they went with it.

Launch sequence of an Atlas-D ICBM, 1960. Source.

Launch sequence of an Atlas-D ICBM, 1960. Source.

Even then things were pretty slow until mid-1954, when Congressional prodding (after they were told that there were serious indications the Soviets were ahead in this area) finally resulted in Atlas given total overriding defense priority. Even then the people in charge of it had to find ways to shortcut around the massive bureaucracy that had grown up around the USAF and DOD contracting policies. In Hughes’ telling of Atlas, it is kind of amazing that it gone done at rapidly as it did — it seems that there were near-endless internal obstacles to get past.  The main problem, one Air Force historian opined, was not technical: “The hurdle which had to be annihilated in correcting this misunderstanding was not a sound barrier, or a thermal barrier, but rather a mental barrier, which is really the only type that man is ever confronted with anyway.” According to one estimate, the various long-term cultural foot-dragging about ballistic missiles in the United States delayed the country from acquiring the technology for six years. Which puts Sputnik into perspective.

The US would start several different ballistic missile programs in the 1950s:

Rocket family Design started Role Military patron Prime industrial contractor Warhead yield
Redstone 1950 IRBM US Army Chrysler 0.5-3.5 Mt
Atlas 1953 ICBM USAF Convair 1.44 Mt
Thor 1954 IRBM USAF Douglas 1.4 Mt
Titan 1955 ICBM USAF Glenn Martin 3.75 Mt
Polaris 1956 SLBM USN Lockheed 0.6 Mt
Minuteman 1957 ICBM USAF Boeing 1.2 Mt

As you can see, there’s some redundancy there. It was deliberate: Titan, for example, was a backup to Atlas in case it didn’t work out. There’s also some interesting stuff going on with regards to other services (Army, Navy) not wanting to be “left out.” More on that in a moment. Minuteman, notably, was based on solid fuel, not liquid, giving it different strategic characteristics, and a late addition. The Thor and Redstone projects were for intermediate-range ballistic missiles (IRBMs), not ICBMs — they were missiles you'd have to station closer to the enemy than the continental United States (e.g., the famous Jupiter missiles kept in Turkey).

The redundancy was a hedge: the goal was to pick the top two of the programs and cancel the rest. Instead, Sputnik happened. In the resulting political environment, Eisenhower felt he had to put into production and deployment all six of them — even though some were demonstrably not as technically sound as others (Thor and Polaris, in their first incarnations, were fraught with major technical problems). This feeling that he was pushed by the times (and by Congress, and the services, and so on) towards an increasingly foolish level of weapons production is part of what is reflected in Eisenhower’s famous 1961 warning about the powerful force of the “military-industrial complex.”4

LEG 3: SUBMARINE-LAUNCHED BALLISTIC MISSILES (SLBMs)

Polaris is a special and interesting case, because it’s the only one in that list that is legitimately a different form of delivery. Shooting a ballistic missile is hard enough; shooting one from a submarine platform was understandably more so. Today the rationale of the SLBM seems rather obvious: submarines have great mobility, can remain hidden underwater even at time of launch, and in principle seem practically “invulnerable” — the ultimate “second strike” guarantee. At the time they were proposed, though, they were anything but an obvious approach: the technical capabilities just weren’t there. As already discussed at length, even ICBMs were seen with a jaundiced eye by the Air Force in the 1950s. Putting what was essentially an ICBM on a boat wasn’t going to be something the Air force was going to get behind. Graham Spinardi’s From Polaris to Trident is an excellent, balanced discussion the technical and social forces that led to the SLBM becoming a key leg of the “triad.”5

The USS Tunny launches a cruise missile (Regulus) circa 1956. Source.

The USS Tunny launches a cruise missile (Regulus) circa 1956. Source.

The Navy had in fact been interested in missile technology since the end of World War II, getting involved in the exploitation of German V-2 technology by launching one from an aircraft carrier in 1947. But they were also shy of spending huge funds on untested, unproven technology. Like the Air Force, they were initially more interested in cruise than ballistic missiles. Pilotless aircraft didn’t seem too different from piloted aircraft, and the idea of carrying highly-volatile liquid fueled missiles made Navy captains squirm. The Regulus missile (research started in 1948, and fielded in 1955) was the sort of thing they were willing to look at: a nuclear-armed cruise missile that could be launched from a boat, with a range of 575 miles. They were also very interested in specifically-naval weapons, like nuclear-tipped torpedoes and depth charges.

What changed? As with the USAF, 1954 proved a pivotal year, after the development of the H-bomb, the von Neumann committee’s recommendations, and fears of Soviet work combined with a few other technical changes (e.g., improvements in solid-fueled missiles, which reduced the fear of onboard explosions and fires). The same committees that ended up accelerating American ICBM work similarly ended up promoting Naval SLBM work as well, as the few SLBM advocates in the Navy were able to use them to make a run-around of the traditional authority. At one point, a top admiral cancelled the entire program, but only after another part of the Navy had sent around solicitations to aerospace companies and laboratories for comment, and the comments proved enthusiastic-enough that they cancelled the cancellation.

As with the ICBM, there was continued opposition from top brass about developing this new weapon. The technological risks were high: it would take a lot of money and effort to see if it worked, and if it didn’t, you couldn’t get that investment back. What drove them to finally push for it was a perception of being left out. The Eisenhower administration decided in 1955 that only four major ballistic missile programs would be funded: Atlas, Titan, Thor, and Redstone. The Navy would require partnering up with either the USAF or US Army if it wanted any part of that pie. The USAF had no need of it (and rejected an idea for a ship-based Thor missile), but the Army was willing to play ball. The initial plan was to develop a ship-based Jupiter missile (part of the Redstone missile family), with the original schedule was to have one that could be fielded by 1965.

But the Navy quickly was dissatisfied with Jupiter’s adaptability to sea. It would have to be shrunk dramatically to fit onto a submarine, and the liquid-fuel raised huge safety concerns. They quickly started modifying the requirements, producing a smaller, solid-fueled intermediate-range missile. They were able to convince the Army that this was a “back-up” to the original Jupiter program, so it would technically not look like a new ballistic missile program. Even so, it was an awkward fit: even the modified Jupiter’s were too large and bulky for the Navy’s plans.

What led to an entirely new direction was a fortuitous meeting between a top naval scientist and Edward Teller (who else?), at a conference on anti-submarine warfare in the summer of 1956. At the conference, Teller suggested that trends in warhead technology meant that by the early 1960s the United States would be able to field megaton-range weapons inside a physics package that could fit into small, ship-based missiles. Other weapons scientists regarded this as possibly dangerous over-hyping and over-selling of the technology, but the Navy was convinced that they could probably get within the right neighborhood of yield-to-weight ratios. By the fall of 1956, the Navy had approved a plan to create their own ballistic missile with an entirely different envelope and guidance system than Jupiter, and so Polaris was born.

Artist's conception of a Polaris missile launch. Source.

Artist's conception of a Polaris missile launch. Source.

The first generation of Polaris (A-1) didn’t quite meet the goals articulated in 1956, but it got close. Instead of a megaton, it was 600 kilotons. Instead of 1,500 mile range, it was 1,200. These differences matter, strategically: there was really only one place it could be (off the coast of Norway) if it wanted to hit any of the big Soviet cities. And entirely separately, the first generation of Polaris warheads were, to put it mildly, a flop. They used an awful lot of fissile material, and there were fears of criticality accidents in the event of an accidental detonation. No problem, said the weapons designers: they’d put a neutron-absorbing strip of cadmium tape in the core of the warhead, so that if the high explosives were ever to detonate, no chain reaction would be possible. Right before any intended use, a motor would withdraw the tape. Sounds good, right? Except in 1963, it was discovered that the tape corroded while inside the cores. It was estimated that 75% of the warheads would not have detonated: the mechanism would have snapped the tape, which would then have been stuck inside the warhead. There was, as Eric Schlosser, in Command and Control, quotes a Navy officer concluding that they had “almost zero confidence that the warhead would work as intended.” They all had to be replaced.6

The first generation of Polaris missiles, fielded in 1960, were inaccurate and short-ranged (separate from the fact that the warheads wouldn’t have worked). This relegated them to a funny strategic position. They could only be used as a counter-value secondary-strike: they didn’t have the accuracy necessary to destroy hardened targets, and many of those were more centrally-located in the USSR.

WHEN AND WHY DO WE TALK ABOUT A TRIAD?

The "triad" was fielded starting in the 1960s. But there was little discussion of it as a "triad" per se: it was a collection of different weapon systems. Indeed, deciding that the US strategic forces were really concentrated into just three forces is a bit of an arbitrary notion, especially during the Cold War but even today. Where do foreign-based IRBMs fit into the "triad" concept? What about strategic weapons that can be carried on planes smaller than heavy bombers? What about the deterrence roles of tactical weapons, the nuclear artillery shells, torpedoes, and the itty-bitty bombs? And, importantly, what about the cruise missiles, which have developed into weapons that can be deployed from multiple platforms?

Nuclear Triad Google Ngram

Relative word frequency for "nuclear triad" as measured across the Google Books corpus. Source.

 

It's become a bit cliché in history circles to pull up Google Ngrams whenever we want to talk about a concept, the professorial equivalent of the undergraduate's introductory paragraph quoting from the dictionary. But it's a useful tool for thinking about when various concepts "took hold" and their relative "currency" over time. What is interesting in the above graph is that the "triad" language seems to surface primarily in the 1970s, gets huge boosts in the late Cold War, and then slowly dips after the end of the Cold War, into the 21st century.

Which is to say: the language of the "triad" comes well after the various weapon systems have been deployed. It is not the "logic" of why they made the weapons systems in the first place, but a retrospective understanding of their strategic roles. Which is no scandal: it can take time to see the value of various technologies, to understand how they affect things like strategic stability.

But what's the context of this talk about the triad? If you go into the Google Books entries that power the graph, they are language along the lines of: "we rely on the triad," "we need the triad," "we are kept safe by the triad," and so on. This sort of assertive language is a defense: you don't need to sing the praises of your weapons unless someone is doubting their utility. The invocation of the "triad" as a unitary strategic concept seems to have come about when people started to wonder whether we actually needed three major delivery systems for strategic weapons.

A strange elaboration of the triad notion from the Defense Logistics Agency, in which the "new triad" includes the "old triad" squished into one "leg," with the other "legs" being even less tangible notions joined by a web of command and control. At this point, I'd argue it might be worth ditching the triad metaphor. Source.

A strange elaboration of the triad notion from the Defense Logistics Agency, in which the "new triad" includes the "old triad" squished into one "leg," with the other "legs" being even less tangible notions joined by a web of command and control. At this point, I'd argue it might be worth ditching the triad metaphor. Source.

When you give something abstract a name, you aid in the process of reification, making it seem tangible, real, un-abstract. The notion of the "triad" is a concept, a unifying logic of three different technologies, one that asserts quite explicitly that you need all three of them. This isn't to say that this is done in bad faith, but it's a rhetorical move nonetheless. What I find interesting about the "triad" concept — and what it leaves out — is that it is ostensibly focused on technologies and strategies, but it seems non-coincidentally to be primarily concerning itself with infrastructure. The triad technologies each require heavy investments in bases, in personnel, in jobs. They aren't weapons so much as they they are organizations that maintain weapons. Which is probably why you have to defend them: they are expensive.

I don't personally take a strong stance on whether we need to have ICBMs and bombers and SLBMs — there are very intricate arguments about how these function with regards to the strategic logic of deterrence, whether they provide the value relative to their costs and risks, and so on, that I'm not that interested in getting into the weeds over. But the history interests me for a lot of reasons: it is about how we mobilize concepts (imposing a "self-evident" rationality well after the fact), and it is also about how something that in retrospect seems so obvious to many (the development of missiles, etc.) can seem so un-obvious at the time.

Notes
  1. The list of these deployments comes from the appendices in History of the Custody and Deployment of Nuclear Weapons, July 1945 through September 1977 (8MB PDF here), prepared by the Office of the Assistant to the Secretary of Defense (Atomic Energy), in February 1978, and Robert S. Norris, William Arkin, and William Burr, "Where They Were," Bulletin of the Atomic Scientists (November/December 1999), 27-35, with a follow-up post on the National Security Archive's website. []
  2. All of the quantitative data on these bombers was taken from their Wikipedia pages. In places where there were ranges, I tried to pick the most representative/likely numbers. I am not an airplane buff, but I am aware this is the sort of thing that gets debated endlessly on the Internet! []
  3. Thomas Hughes, Rescuing Prometheus: Four Monumental Projects That Changed the Modern World (New York : Pantheon Books, 1998), chapter 3, "Managing a Military Industrial Complex: Atlas," 69-139. []
  4. Eric Schlosser's Command and Control has an excellent discussion of the politics of developing the early missile forces. []
  5. Graham Spinardi, From Polaris to Trident: The Development of US Fleet Ballistic Missile Technology (Cambridge University Press, 1994). []
  6. Spinardi, as an aside, gives a nice account of how they eventually achieved the desired yield-to-weight ratio in the W-47: the big “innovation” was to just use high-enriched uranium as the casing of the secondary, instead of unenriched uranium. As he notes, this was the kind of thing that was obvious in retrospect, but wasn’t obvious at the time — it required a different mindset (one much more willing to “expend” fissile material!) than the weapons designers of the early 1950s were used to. []
Redactions

The curious death of Oppenheimer’s mistress

Friday, December 11th, 2015

The most recent episode of Manhattan, 209, is the penultimate episode for Season 2. There were many aspects that pleased me a lot, in part because I saw my own fingerprints on them: the discussion between Frank and Charlie about the possibility of a demonstration, and Charlie's later coming around to the idea that the best thing you could do for the future was to make the use of the first atomic bombs usage as terrible as possible; the full-circling of the subplot involving the patent clerk; the tricky politics of the Target Committee. But my favorite part was that the Jean Tatlock subplot finally paid off. The idea that Jean Tatlock might have been murdered by intelligence agents working for Manhattan Project security sounds like a crazy conspiracy theory, a totally imaginative take by the writers of the show. But there's potentially more to it than just that.

Three photographs of Jean Tatlock. The one at left and right come from the website of Shirley Streshinsky and Patricia Klaus's An Atomic Love Story, a book about Oppenheimer's loves; the one in the middle comes from Kai Bird and Martin Sherwin's American Prometheus.

Three photographs of Jean Tatlock. The one at left and right come from the website of Shirley Streshinsky and Patricia Klaus's An Atomic Love Story, a book about Oppenheimer's loves; the one in the middle comes from Kai Bird and Martin Sherwin's American Prometheus.

Jean Tatlock is an interesting and curious character. In most narratives about the life of J. Robert Oppenheimer, she shows up with two purposes: to radicalize him, and to humanize him. He put his relationship this way in his security hearing of 1954:

In the spring of 1936, I had been introduced by friends to Jean Tatlock, the daughter of a noted professor of English at the university; and in the autumn, I began to court her, and we grew close to each other. We were at least twice close enough to marriage to think of ourselves as engaged. Between 1939 and her death in 1944 I saw her very rarely. She told me about her Communist Party memberships; they were on again, off again affairs, and never seemed to provide for her what she was seeking. I do not believe that her interests were really political. She loved this country and its people and its life. She was, as it turned out, a friend of many fellow travelers and Communists, with a number of whom I was later to become acquainted.

I should not give the impression that it was wholly because of Jean Tatlock that I made leftwing friends, or felt sympathy for causes which hitherto would have seemed so remote from me, like the Loyalist cause in Spain, and the organization of migratory workers. I have mentioned some of the other contributing causes. I liked the new sense of companionship, and at the time felt that I was coming to be part of the life of my time and country.

One, of course, doesn't take such a statement fully at face value, being made, as it was, ten years after her death, and in the middle of a hearing on whether Oppenheimer himself was loyal to the country. It is an interesting fact, as an aside, that it was Tatlock who broke off the official relationship, in 1939, rejecting an offer of marriage. He got seriously involved with Katharine (Kitty), his future wife, a few months later.

1954 JRO hearing - JRO on Tatlock

Tatlock's name pops up in the Oppenheimer security hearing a number of times, and proved a rather tricky, if not embarrassing, issue for Oppenheimer. Oppenheimer admitted that he had visited Tatlock in San Francisco in June of 1943. It was a secret visit, approved by nobody, at the time when Oppenheimer was director of Los Alamos. Oppenheimer was being tailed by intelligence agents during the entire trip, however. A few choice selections from the transcript:

Oppenheimer: I visited Jean Tatlock in the spring of 1943. I almost had to. She was not much of a communist but she was certainly a member of the party. There was nothing dangerous about that. There was nothing potentially dangerous about that. ...

Q: Doctor, between 1939 and 1944, as I understand it, your acquaintance with Miss Tatlock was fairly casual, is that right?

JRO: Our meetings were rare. I do not think it would be right to say our acquaintance was casual. We had been very much involved with one another and there was still very deep feeling when we saw each other. ... I visited her, as I think I said earlier, in June or July of 1943.

Q: I believe you said in connection with that that you had to see her.

JRO: Yes. 

Q: Why did you have to see her?

JRO: She had indicated a great desire to see me before we left [for Los Alamos]. At that time I couldn't go. For one thing, I wasn't supposed to say where we were going or anything. I felt that she had to see me. She was undergoing psychiatric treatment. She was extremely unhappy. 

Q: Did you find out why she had to see you?

JRO: Because she was still in love with me.

Q: Where did you see her?

JRO: At her home. ...

Q: You spent the night with her, didn't you?

JRO: Yes. 

Q: That was when you were working on a secret war project?

JRO: Yes.

Q: Did you think that consistent with good security?

JRO: It was as a matter of fact. Not a word — it was not good practice.

All of the above was discussed at the security hearing with Kitty present in the room. Ouch.

1954 JRO hearing - Lansdale on Tatlock

Later, they asked Lt. Col. John Lansdale, Jr., the head of Manhattan Project security, about Tatlock and Oppenheimer:

Q: You had no doubt, did you, that Jean Tatlock was a communist?

Lansdale: She was certainly on our suspect list. I know now that she was a communist. I cannot recall at the moment whether we were sure she was a communist at the time.

Q: Did your definition of very good discretion include spending the night with a known communist woman?

L: No, it didn't. Our impression was that interest was more romantic than otherwise, and it is the sole instance that I know of.

Tatlock, according to the standard version of the story, suffered from intense depression and killed herself in January 1944. Her love of John Donne may have been why Oppenheimer named the first test for the atomic bomb "Trinity." We don't know; even Oppenheimer claimed not to know. It makes for a good story as it is, a poetic humanization of a weapons physicist and the first atomic test. Peer De Silva, the head of security for the lLos Alamos laboratory, later wrote that he was the one who told Oppenheimer of Tatlock's death, and that he wept: "[Oppenheimer] went on at considerable length about the depth of his emotion for Jean, saying there was really no one else to whom he could speak."1

But there may be more to the story. Gregg Herken's Brotherhood of the Bomb (Henry Holt, 2002) was the first source I saw that really peeled apart the Oppenheimer-Tatlock story, and got into the details of the 1943 visit. Oppenheimer had told security he was visiting Berkeley to recruit an assistant, though Tatlock was always the real reason for the trip. He was being tailed by G-2 agents the entire time, working for Boris Pash, who was in charge of Army counterintelligence in the Bay Area. They tailed Oppenheimer and Tatlock to dinner (Mexican food), and then followed them back to Tatlock's house. Army agents sat in a car across the street the entire night. The assistant that Oppenheimer hired was David Hawkins, who had his own Communist sympathies. The whole thing was a very dodgy affair (in many senses of the term) for the scientific head of the bomb project. Pash subsequently got permission to put an FBI bug on Tatlock's phone.2

Oppenheimer at Los Alamos. Source: Emilio Segrè Visual Archives.

Oppenheimer at Los Alamos. Source: Emilio Segrè Visual Archives.

More recently, and more sensationally, there is an entire chapter on Tatlock's death in Kai Bird and Martin Sherwin's biography of Oppenheimer, American Prometheus (Knopf, 2005). They suggest that there is evidence that Tatlock's death might not have been a suicide at all — that it might have been an assassination, murder. Now, just to make sure we are clear, they go to lengths to suggest that the evidence is not clear, and that their argument is speculative and circumstantial. But I also want to point out that Bird and Sherwin aren't cranks: I know them both personally and professionally, and they are serious about their craft and research, and the chapter on Tatlock's death, like the others in their book, is meticulously documented. The book itself won the Pulitzer Prize, as well. So this is not something that should be easily dismissed.

Bird and Sherwin paint a messy picture. Tatlock's father discovered her dead, having broken into her apartment after a day of not being able to reach her. He found her "lying on a pile of pillows at the end of the bathtub, with her head submerged in the partly filled tub." He found her suicide note, which read: "I am disgusted with everything... To those who loved me and helped me, all love and courage. I wanted to live and to give and I got paralyzed somehow. I tried like hell to understand and couldn’t... I think I would have been a liability all my life—at least I could take away the burden of a paralyzed soul from a fighting world."

John Tatlock moved her body to the sofa, rummaged through the apartment to find her correspondence, and burnt it in the fireplace. He spent hours in the apartment before calling the funeral parlor, and it was the funeral parlor who called the police. The cause of death was drowning. To quote from Bird and Sherwin directly:

According to the coroner, Tatlock had eaten a full meal shortly before her death. If it was her intention to drug and then drown herself, as a doctor she had to have known that undigested food slows the metabolizing of drugs into the system. The autopsy report contains no evidence that the barbiturates had reached her liver or other vital organs. Neither does the report indicate whether she had taken a sufficiently large dose of barbiturates to cause death. To the contrary, as previously noted, the autopsy determined that the cause of death was asphyxiation by drowning. These curious circumstances are suspicious enough—but the disturbing information contained in the autopsy report is the assertion that the coroner found “a faint trace of chloral hydrate” in her system. If administered with alcohol, chloral hydrate is the active ingredient of what was then commonly called a “Mickey Finn”—knockout drops. In short, several investigators have speculated, Jean may have been “slipped a Mickey,” and then forcibly drowned in her bathtub.

The coroner’s report indicated that no alcohol was found in her blood. (The coroner, however, did find some pancreatic damage, indicating that Tatlock had been a heavy drinker.) Medical doctors who have studied suicides—and read the Tatlock autopsy report—say that it is possible she drowned herself. In this scenario, Tatlock could have eaten a last meal with some barbiturates to make herself sleepy and then self-administered chloral hydrate to knock herself out while kneeling over the bathtub. If the dose of chloral hydrate was large enough, Tatlock could have plunged her head into the bathtub water and never revived. She then would have died from asphyxiation. Tatlock’s “psychological autopsy” fits the profile of a high-functioning individual suffering from “retarded depression.” As a psychiatrist working in a hospital, Jean had easy access to potent sedatives, including chloral hydrate. On the other hand, said one doctor shown the Tatlock records, “If you were clever and wanted to kill someone, this is the way to do it.”3

Interesting — but not in any way conclusive. What becomes more suspicious is when you look a bit more at the person who might have been most interested in Tatlock being "removed from the picture": Lt. Col. Boris Pash, chief of the Counterintelligence Branch of the Western Defense Command (Army G-2 counterintelligence). A Russian immigrant to the United States who had fought on the losing side of the Russian Civil War, Pash was regarded by fellow Russian émigré George Kistiakowsky as "a really wild Russian, an extreme right wing, sort of Ku Klux Klan enthusiast."4

Boris T. Pash, head of West Coast G-2 during the war, and later head of the Alsos mission. Image from the Atomic Heritage Foundation.

Boris T. Pash, head of West Coast G-2 during the war, and later head of the Alsos mission. Image from the Atomic Heritage Foundation.

Aside from bugging Tatlock's apartment, Pash attempted to get Oppenheimer fired as a potential spy, during the war. He worried that even if Oppenheimer wasn't himself spying, he might be setting up people within his organization (like Hawkins) who could be spies, with Tatlock as the conduit. He was overruled by Lansdale and Groves, both of whom trusted Oppenheimer. Pash would later be given the job of being the military head of the Alsos mission — to better to harass German atomic scientists rather than American ones? 5

In his memos about Oppenheimer and Tatlock, Pash comes off as fearful, hyperbolic, and hyperventilating.  He did not see this as a matter of idle suspicion, but intense danger. After his recommendations were ignored, could he have taken things into his own hands? It's a big claim. What seems to give it the whiff of credence is what Pash did after the war. In the mid-1970s, during the Church Committee hearings about the mis-deeds of the CIA, it came out that from 1949 through 1952, Pash was Chief of Program Branch 7 — which was responsible for assassinations, kidnappings, and other "special operations," but apparently did not perform any.6

Could Pash, or someone working for him, have killed Tatlock? Probably not Pash himself: in November 1943 (two months before Tatlock's death), he was already in Europe organizing the Alsos mission. The records indicate that in late December 1943 through mid-January 1944, Pash was in Italy. It's not very plausible that he'd have raced back to San Francisco for a "side mission" of this sort.7 Would someone else in G-2, or the Manhattan Project intelligence services, be willing and capable of doing such a thing? We don't know.

Might Tatlock's death just really have been what it appeared to be at first glance — a suicide? Of course. Bird and Sherwin conclude that there just isn't enough evidence to think anything else with any certainty. What does it do to our narrative, if we assume Tatlock's death was not a suicide? It further emphasizes that those working on the bomb were playing at a very dangerous game, with extremely high stakes, and that extraordinary measures might have been taken. The number of lives on the line, present and future, could seem staggeringly large. Just because it makes for a good story, of course, doesn't make it true. But from a narrative standpoint, it does make for a nice area of historical ambiguity — just the kind of thing that a fictional, alternate-reality version of the bomb project, like Manhattan, is designed to explore.

Notes
  1. Peer De Silva, Notes on an unwritten manuscript titled "The Bomb Project: Mysteries That Survived Oppenheimer," (ca. Spring 1976), copy received from Gregg Herken, who in turn was given them by Marilyn De Silva in 2002. []
  2. Gregg Herken, Brotherhood of the bomb: The tangled lives and loyalties of Robert Oppenheimer, Ernest Lawrence, and Edward Teller (New York: Henry Holt and Co., 2002), 101-102. []
  3. Kai Bird and Martin J. Sherwin, American Prometheus: The triumph and tragedy of J. Robert Oppenheimer (New York : A.A. Knopf, 2005): chapter 18. []
  4. George Kistiakowsky interview with Richard Rhodes (15 January 1982), transcript reproduced on the Manhattan Project Voices website. []
  5. Bird and Sherwin, chapter 16. []
  6. Bird and Sherwin, chapter 16. Separately, in an executive (Top Secret) hearing before the Church Committee in 1975, Pash disputed that he was ever an employee of the CIA ("I was never an employee of the Agency. I was detailed from the Army for a normal tour of duty to the Agency.") and that the unit he was part of "was not an assassination unit." In the same testimony he did, however, emphasize how rag-tag American counterintelligence was during World War II, having called up a lot of reserve units like himself — he was a schoolteacher originally — sending them briefly to have training with the FBI, and then sending them out into the field extremely fresh. On the early CIA, Pash said: "So, when the CIA was formed, a lot of those people with these wild ideas and wild approaches were there. So of course when you say you're in charge of all other activities in individual activities, and these fellows might have ideas well, you know, like we did maybe in World War II, I heard they did something like that, well, it's easier to kill a guy than to worry about trailing him, you see. So maybe that is where something originated." (The not-entirely-clear phrasing is in the original transcript.) He went on to say that at one point an idea of assassination was floated when he was conveniently out of town, but that his office had rejected it. The testimony is not entirely clear on timing issues, and Pash goes out of his way to emphasize his lack of memory from the period, urging that his time with the CIA was mostly spent planning operations, but not actually carrying them out. Testimony of Boris T. Pash at an Executive Hearing of the Select Senate Study of Governmental Operations with Respect to Intelligence Activities (7 January 1976). As with all of this kind of spy stuff, it can be very hard to sort out who is telling the truth. There are motives upon motives for giving inaccurate portrayals of things in one direction or the other. Many of the allegations against the CIA and Pash came originally from E. Howard Hunt, who is a character of some impressive slipperiness. Pash emphatically denied most of what Hunt said, and insinuated that it might be part of a disinformation campaign, or something Hunt was doing for personal profit. Hunt, in his own executive session testimony, said that Pash himself had a reputation for kidnappings when he worked in the CIA, not assassinations. Interestingly, Hunt told the committee that the reason he had remembered Pash's name, all those years later, was because he had been reading Nuel Pharr Davis' book, Lawrence and Oppenheimer (Simon and Schuster, 1968) — which strikes me as a bit meta, having walked down this rabbit hole from another Oppenheimer biography. Confronted with Pash's denial, Hunt equivocated a bit, not calling Pash a liar, but suggesting that some of what he heard about Pash might not be entirely accurate, but sticking to the basics. It makes for an interesting read. Testimony of E. Howard Hunt at an Executive Hearing of the Select Senate Study of Governmental Operations with Respect to Intelligence Activities (10 January 1976). The Church Committee staff concluded that while Pash's group may have had assassinations and kidnappings as part of its responsibility, it performed none of them and did not plan any. Apologies for the digressive footnote, but I thought this was too interesting not to share, or to include the documents in question! []
  7. There are numerous memos and requisition orders written by Pash in Correspondence ("Top Secret") of the Manhattan Engineer District, 1942-1946, microfilm publication M1109 (Washington, D.C.: National Archives and Records Administration, 1980), Roll 4, Target 1, Folder 26, "Files Received from Col. Seeman's Section (Foreign Intelligence)," Subfile 26N, "Alsos Mission to Italy." []
News and Notes | Redactions

H-bomb headaches

Friday, March 27th, 2015

Once again, the US government has gotten itself into a bad situation over the supposed secret of the hydrogen bomb. As The New York Times reported earlier this week, the Department of Energy (DOE) censors demanded that the physicist Ken Ford heavily redact a manuscript he had written on the history of the hydrogen bomb. Ford, however, declined to do so, and you can buy the unexpurgated text right now on Amazon in Kindle format, and in hardback and paperback fairly soon.

Ken Ford by Mark Makela for the New York Times.

Ken Ford by Mark Makela for the New York Times.

Ford was a young physicist working with John A. Wheeler during the 1950s, and so a lot of his book is a personal memoir. He is also (in full disclosure) the former head of the American Institute of Physics (my employer from 2011-2014), and I was happy to give him some assistance in the preparation of the manuscript, mainly in the form of tracking down declassified/unclassified sources relating to his story, and helped him get solid citations to them. Ken actually just recently came to Hoboken so we could iron out a few of the final citations in a Starbucks near my apartment. I knew he was having some issues with classification review, but I didn't know he was going to play it like this — I am impressed by his boldness at just saying "no" to DOE.

Nothing I saw in his work struck me as anything actually still secret. Which is not to say that it might or might not be officially classified — just that the technical information is much the same kind of technical information you can find in other, unclassified sources, like the books of Richard Rhodes and Chuck Hansen, and people on the web like Carey Sublette, among others. And therein lies the rub: is information still a secret if it is officially classified, even if it is widely available?

This has been a tricky thing for the government to adjudicate over the years. The Atomic Energy Act of 1946 (and its revisions) charges the Atomic Energy Commission (AEC), and later the Department of Energy, with regulating "restricted data" wherever it appears, wherever it comes from. According to the law, they don't have any choice in the matter. But over the years they changed their stance as to the best way to achieve this regulation.

One of the earliest decisions of the Lilienthal AEC was to adopt a "no comment" policy with regards to potentially sensitive information published by people unassociated with the nuclear weapons complex. Basically, if someone wanted to speculate on potentially classified topics — like the size of the US nuclear stockpile, or how nuclear weapons worked — the AEC in general would not try to get in their way. They might, behind the scenes, contact editors and publishers and make an appeal to decency and patriotism. (Sometimes this got expressed in a comical fashion: they would have "no comment" about one paragraph but not another.) But they generally did not try to use threat of prosecution as the means of achieving this end, because they felt, correctly, that censorship was too blunt an object to wield very effectively, and that telling someone on the outside of the government that they had hit upon classified information was tantamount to revealing a secret in and of itself.

Howard Morland then-and-now. On the left, Morland and his H-bomb model, as photographed for the Washington Post in 1981 (at the time his book account of the Progressive case, The Secret that Exploded, was published). At right, Morland and me at a party in Washington, DC, just before I moved to New York. He is wearing his H-bomb secret shirt he had made in 1979 (which he discusses in his book). I felt very honored both to see the original shirt and to see the pose he imagined he might do with it before the press, to reveal the secret to the world.

Howard Morland then and now. On the left, Morland and his H-bomb model, as photographed for the Washington Post in 1981 (at the time his book account of the Progressive case, The Secret that Exploded, was published). At right, Morland and me at a party in Washington, DC, just before I moved to New York. He is wearing his H-bomb secret shirt he had made in 1979 (which he discusses in his book). I felt very honored both to see the original shirt and to see the pose he imagined he might do with it before the press, to reveal the secret to the world.

There were a few instances, however, where this "no comment" policy broke down. The best-known one is the case of United States v. Progressive, Inc. in 1979. This is the famous case in which the DOE attempted to obtain (and was briefly granted) prior restraint against the publication of a magazine that claimed to contain the "secret of the hydrogen bomb," written by the journalist/activist Howard Morland. The DOE convinced a judge to grant a restriction on publication initially, but in the appeals process it became increasingly clear that the government's case was on fairly shaky grounds. They declared the case moot when the researcher Chuck Hansen had a paper on hydrogen bomb design published in a student newspaper — in this case, it looked like an obvious attempt to back out before getting a bad ruling. Morland's article appeared in print soon after and became the "standard" depiction of how the Teller-Ulam design works, apparently validated by the government's interest in the case.

In this case, the issue was about the most egregious incursion of the Atomic Energy Act into the public sphere: the question of whether the government could regulate information that it did not itself play a part in creating. The "restricted data" clause of the Atomic Energy Act (after which this blog is named) specifies that all nuclear weapons-related information is to be considered classified unless explicitly declassified, and makes no distinction about whether said information was created in a laboratory by a government scientist or anywhere else in the world by private citizens. Thus nuclear weapons information is "born secret" according to the law (unlike any other forms of controlled national defense information), which in cases like that of The Progressive puts it in direct conflict with the First Amendment.

Ford's book is something different, however. Ford was himself a government scientist and had a security clearance. This means he was privy to information that was most definitely classified as both "restricted data" and national defense information. He worked on Project Matterhorn B at Princeton, which was part of the hydrogen bomb effort in the early 1950s. He signed contracts that governed his behavior, both while working for the government and later. He agreed to let the government evaluate his work for classified information, and agreed he would not give away any classified information.

At left, the redacted Bethe article as published in Scientific American, April 1950. At right, the original draft, redacted by the Atomic Energy Commission (photograph taken by me at the National Archives, College Park).

At left, the redacted Bethe article as published in Scientific American, April 1950. At right, the original draft, redacted by the Atomic Energy Commission (photograph taken by me at the National Archives, College Park).

There is a historical parallel here, and a better one than the Progressive case. In 1950, the magazine Scientific American ran a series of articles about the hydrogen bomb. The first of these was by the gadfly physicist Louis Ridenour. Ridenour had no connection with nuclear weapons work and he could say whatever he wanted. But the second was by Hans Bethe, who was intimately involved with classified nuclear work. Bethe obviously didn't try to publish anything he thought was secret. But the AEC got several passages deleted from the article anyway.

The passages removed were extremely banal. For example, Bethe said that it seemed like they would need to use the deuterium-tritium reaction to achieve fusion. This level of basic information was already in the Ridenour article that was published a month before. So why delete it from the Bethe article? Well, because Bethe was connected with the government. If Ridenour says, "tritium is necessary," it doesn't mean that much, because Ridenour doesn't have access to secrets. If Bethe says it, it could be potentially understood by an adversary to mean that the deuterium-deuterium reaction isn't good enough (and it isn't), and thus that the Los Alamos scientists had found no easy short-cut to the H-bomb. So the same exact words coming out of different mouths had different meanings, because coming out of Bethe's mouth they were a statement about secret government research, and out of Ridenour's mouth they were not. The whole thing became a major publicity coup for Scientific American, of course, because there is no better publicity for a news organization than a heavy-handed censorship attempt.

I have looked over a lot of Ford's book. It's available on Amazon as a e-book, or as a PDF directly from the publisher. I haven't had time to read the entire thing in detail yet, so this is nothing like a formal review. The sections that I imagine drew the ire of the DOE concern some of the early thinking about how the Teller-Ulam design came about. This is an area where there is still a lot of historical ambiguity, because tracing the origins of a complex technical idea is not straightforward even without classification mucking things up. (I am working on a paper of this myself, and have a somewhat different interpretation than Ken, but that is really neither here nor there.)

Ken Ford Building the H-bomb

There's nothing that looks classified in Ken's work on this to me. There are references to things that generally don't show up in government publications, like "equilibrium conditions," but the existence of these kinds of technical issues are common in the open literature on thermonuclear weapons, and a lot of them are present in the related field of inertial confinement fusion, which was largely declassified in the late 1990s.1

So why is the DOE pent up over Ford? It is probably not an issue of the content so much as the fact that he is the one talking about it. It is one thing for an unaffiliated, uncleared person like me to say the words "equilibrium conditions" and talk about radiation implosion and tampers and cryogenic cooling of plutonium and things of that nature. It's another for a former weapons physicist to say it.

It's also related to the fact that because Ken was a former weapons physicist, they have to review his work. And they have to review it against their official guides that tell them what is technically secret and what is not. And what is allowed by the DOE to talk about is not the same thing about what people on the outside of the DOE do talk about. So, for example, this is pretty much most of what the DOE considers kosher about thermonuclear weapons:

  • The fact that in thermonuclear (TN) weapons, a fission “primary” is used to trigger a TN reaction in thermonuclear fuel referred to as a “secondary.” 
  • The fact that, in thermonuclear weapons, radiation from a fission explosive can be contained and used to transfer energy to compress and ignite a physically separate component containing thermonuclear fuel.  Note: Any elaboration of this statement will be classified.
  • Fact that fissile and/or fissionable materials are present in some secondaries, material unidentified, location unspecified, use unspecified, and weapons undesignated. 

Now you can find a lot more elaboration on these statements in the works of Chuck Hansen, Carey Sublette, and, hell, even Wikipedia these days. (Fun fact: Howard Morland, of The Progressive case, is an active Wikipedian and contributor to that page.) And in fact there is a lot that has been released by the government that does lend towards "elaboration" of these statements, because it is impossible to full compartmentalize all of this kind of information in such neat little boxes.

But the job of the DOE reviewer was to sit down with the guide, sit down with Ken's book, and decide what the guide said they had to do regarding the book. And in this case, it was about 10% of the book that the guide said they had to get rid of. And in this case, they are bound by the guide. Now, at a certain point, one has to say, if the guide is saying that lots of stuff that is already in Richard Rhodes' Dark Sun, published 20 years ago, still needs to be kept under lock and key, well, maybe the guide needs to be changed. But there is arguably something of a difference between Rhodes (an outsider) writing things, and Ford (an insider) writing the same things. But it's hard to see how any of this is going to matter with regard to national security today or in the future — it doesn't seem like these kinds of statements are going to be what enables or disables future proliferators from acquiring thermonuclear weapons.

"How institutions appear / how institutions are." From one of my favorite comics published on Subnormality, by Winston Rowntree.

"How institutions appear / how institutions are." From one of my favorite comics published on Subnormality, by Winston Rowntree. In this analogy, Ken is the beaver.

What's amazing, again, is not that the DOE told Ken to delete things from his book. That is somewhat expected given how the classification system works. What's amazing is that Ken told them to shove off and published it anyway. That doesn't happen so often, that a once-insider won't play ball. And it has no doubt put the DOE in a tough situation: they've set things up for a good story (like the one in the New York Times) about the silliness of government secrecy, and as a result have probably resulted in a lot of book sales that wouldn't have otherwise happened. In this case, their attempt at preserving some form of secrecy has certainly resulted in them just calling more attention to the work in question.

What can they do to Ken? Well, technically, they probably could prosecute him under the Atomic Energy Act, or potentially the Espionage Act. But I'm pretty sure they won't. It would be a public relations nightmare for them, would probably result in the release of even more information they deem sensitive, and Ken is no rogue agent. Which just goes to highlight one of the points I always make when I talk to people about secrecy: from the outside, it can look like government institutions are powerful and omnipotent with regards to classification. But they are usually weaker and more frail than they appear, because those who are bound by secrecy usually end up losing the public relations war, because they aren't allowed to participate as fully as those who are on the outside.

Notes
  1. The Teller-Ulam design is perhaps better called the Equilibrium Super, to distinguish it from the Non-Equilibrium "Classical" Super design. In a basic sense, it refers to the fact that they were trying to achieve conditions that would result in a lot of fusion all at once, as opposed to a traveling "wave" of fusion along a cylinder of fuel. []
Redactions

Nixon and the bomb: “I just want you to think big, Henry!”

Friday, October 25th, 2013

Richard Nixon was a President so utterly fascinating that if he didn't exist, historians would have had to invent him. He was both clever and odious, politically appealing but personally unpleasant. Flawed enough that he managed to pointlessly lose the Presidency because of his insecurities, his desire for even more of a landslide than he already had. Anti-semitic, homophobic, racist — but also canny, both with regards to foreign policy and American domestic politics. And what a gift for historians of the future, that he compulsively recorded himself saying awful things? It's almost too much to be believed, the truth being much more stranger than any fictionalized President could be.

Nixon portrait cropped

We don't talk much about Nixon and the bomb, which is perhaps a little odd. The Nixon years were those of détente, which has something to do with it, and there were no "close calls" or fiery public rhetoric about the bomb. Nixon only rarely shows up personally in my work; he didn't appear to get involved with nuclear matters to the degree that Kennedy or Eisenhower did, for example, much less those like Reagan or Truman.

But this is an oversight. Nixon and the bomb is an immensely interesting subject, as I recently learned. Last week I was at a nuclear history/policy conference hosted by Francis Gavin, among a few others, that was itself immensely interesting and fruitful. Before going, I thought I should get around to reading Gavin's latest book, Nuclear Statecraft: History and Strategy in America's Atomic Age, since he had bothered to invite me and all.1

Gavin - Nuclear Statecraft - cover

It's incredibly interesting as a book of history written with a mind towards those who care about policy. Each chapter tackles a major issue in nuclear history and gives a unique perspective or new findings on it. For example, the Kennedy and Johnston administrations get lots of credit for adopting a "flexible response" approach to nuclear targeting, but Gavin reports that while they gave speeches on this, in practice their war plans were little more flexible than Eisenhower's, because privately they judged flexibility to be difficult and dangerous. That was new to me, and a nice point about the difference between public statements and official policy, and the trickiness of divining information about secret programs from the party line.

The chapter that really wowed me was on Nixon. Again, I hadn't given Nixon and the bomb all that much thought. But Gavin points out that it deserves much more attention, because while on paper Nixon looked like an exemplary arms controller, but in private, he is revealed as a total maniac something much more complicated.

For his arms control cred, just consider that Nixon was the one who signed the SALT treaty, the ABM treaty, and the Biological Weapons Convention. He was also President when the Nuclear Non-Proliferation Treaty was ratified, and when the SALT II talks began. Kind of a non-trivial list of treaties and agreements — an impressive record for any US President. But as Gavin puts it:

The documents, however, reveal that Kissinger and, especially, Nixon had a different notion of how nuclear weapons affected international relations. ... Theirs was a realist view—they believed that world politics was driven, as it had been for centuries, by geopolitical competition between great powers. The "nuclear revolution" had not changed this core feature of the international system. In relations with the Soviets, the message to their opponents was clear: "Look, we'll divide up the world, but by God you're going to respect our side or we won't respect your side."2

As evidence of this, Gavin has lots of excerpts from conversations between Nixon and Kissinger about nukes and treaties. They are universally disdainful of arms control. While Nixon was beginning the bomb the hell out of Cambodia (one of his least popular policies), he remarked to Kissinger: "Looking back over the past year we have been praised for all the wrong things: Okinawa, SALT, germs, Nixon Doctrine. Now [we are] finally doing the right thing." Which tells you a lot about Nixon's worldview: what mattered to him, in the end, was winning in Vietnam. Full stop. Everything else was just a distraction.

Nixon contemplative

As for arms control, Nixon told Kissinger that "I don't give a damn about SALT; I just couldn't care less about it." On the kinds of technical matters that concerned security wonks, like the number of radars or missile interceptors, Nixon privately explained that "I don't think it makes a hell of a lot of difference," and that he thought the arms controllers were real chumps about this kind of thing. He opposed an anti-ballistic missile site in the nation's capital because:

I don't want Washington. I don't like the feel of Washington. I don't like that goddamn command airplane or any of this. I don't believe in all that crap. I think the idea of building a new system around Washington is stupid.

Which you have to admit is sort of a novel argument against anti-ballistic missiles, right? Because you don't actually like the nation's capital that you're President of. He dismissed the Biological Weapons Convention as "the silly biological warfare thing, which doesn't mean anything," as opposed to what he considered the really important stuff — again, the war in Vietnam.3

For Dick and Henry, treaties were just pieces of paper that would probably be violated the moment they proved less than useful for a state. Realpolitik, plain and simple. But they were not just flying by the seat of their pants. Their approach to international politics was, Gavin argues, coherent. It just didn't give a lot of credence to the idea that nuclear weapons had any special importance with regards to international order, since they really didn't think that they were going to get into a genuine shooting war with the USSR anytime soon. Worse, they thought that arms control successes could lead towards the Soviets attempting to take concessions elsewhere — that if they were "good" in one arena they could then get away with being "bad" in another.

Dick and Henry

But my favorite quotes are from Nixon about Vietnam. During a spring offensive by the North Vietnamese in 1972, Nixon told Kissinger:

We're going to do it. I'm going to destroy the goddamn country, believe me, I mean destroy it if necessary. And let me say, even the nuclear weapons if necessary. It isn't necessary. But, you know, what I mean is, what shows you the extent to which I'm willing to go. By a nuclear weapon, I mean that we will bomb the living bejeezus out of North Vietnam and then if anybody interferes we will threaten the nuclear weapons.

A week later, he continued to a somewhat horrified Kissinger:

Nixon: I'd rather use the nuclear bomb. Have you got that ready?
Kissinger: That, I think, would just be too much.
Nixon: A nuclear bomb, does that bother you?... I just want you to think big, Henry, for Christ's sake! The only place where you and I disagree is with regard to the bombing. You’re so goddamned concerned about civilians, and I don’t give a damn. I don’t care.
Kissinger: I’m concerned about the civilians because I don’t want the world to be mobilized against you as a butcher.4

Yeesh. Which just goes to show, that Nixon's realpolitik approach to nuclear weapons does seem to be slightly unhinged at times — that nukes were not necessarily off the table when he thought about the things he really cared about, at least when he was trying to get a rise out of Kissinger.

As for the NPT, Nixon opposed it during his election campaign, both because he felt treaties were by themselves unenforcible and because he thought there might be some American allies who could use their own nukes. (As a possible example of the kind of difficulty the NPT created, consider that Nixon was the one who helped formulate the pact with Golda Meir that involved Israel never admitting it possessed nuclear weapons so as to maintain good relations with the USA. The NPT put limitations on the US with regards to its Middle Eastern ally, which is not something Nixon would have been happy about.)

Nixon madman

Lastly, there is the "madman" approach that Nixon and Kissinger cooked up — that Kissinger should convince the Soviets that Nixon was unhinged enough to start nuking if things went too sour in Vietnam or elsewhere. This is perhaps Nixon's most significant engagement with the nuclear question, and it was all psychological, all ploy. And, as Gavin points out, of questionable effectiveness.

Gavin doesn't defend Nixon's position on nukes and treaties; he just points out that Nixon actually had a position, and that it was actually deeply at odds with his (mostly positive) public record. The reason Nixon felt free to sign so many agreements is in part because he didn't take them very seriously. How's that for an ironic twist? If you don't think arms control treaties actually matter, then what's the harm in signing a few more of them?

Notes
  1. Francis Gavin, Nuclear Statecraft: History and Strategy in America's Atomic Age (Cornell University Press, 2012). []
  2. Gavin, 108. []
  3. Gavin, 109-110. []
  4. Gavin, 116, with some of the rest of the quote filled out from elsewhere. []