Posts Tagged ‘Livermore’

Meditations

Maintaining the bomb

Friday, April 8th, 2016

We hear a lot about the benefits of “innovation” and “innovators.” It’s no small wonder: most of the stories we tell about social and technological “progress” are about a few dedicated people coming up with a new approach and changing the world. Historians, being the prickly and un-fun group that we are, tend to cast a jaundiced eye at these kinds of stories. Often these kinds of cases ignore the broader contextual circumstances that were required for the “innovation” to appear or take root, and often the way these are told tend to make the “innovator” seem more “out of their time” than they really were.

The "logo" of the Maintainers conference, which graces its T-shirts (!) and promotional material. I modeled the manhole design off of an actual manhole cover here in Hoboken (photograph taken by me).

The “logo” of the Maintainers conference, which graces its T-shirts (!) and promotional material. I modeled the manhole design off of an actual manhole cover here in Hoboken (photograph taken by me).

Two of my colleagues (Andy Russell and Lee Vinsel) at the Science and Technology Studies program here at the Stevens Institute of Technology (official tagline: “The Innovation University“) have been working on an antidote to these “innovation studies.” This week they are hosting a conference called “The Maintainers,” which focuses on an alternative view of the history of technology. The core idea (you can read more on the website) is that the bulk of the life and importance of a technology is not in its moment of “innovation,” but in the “long tail” of its existence: the ways in which it gets integrated into society, needs to be constantly repaired and upgraded, and can break down catastrophically if it loses its war against entropy. There is a lot of obvious resonance with infrastructure studies and stories in the news lately about what happens if you don’t repair your water systems, bridges, subway trains, and you-name-it.1

I’ve been thinking about how this approach applies to the history and politics of nuclear weapons. It’s pretty clear from even a mild familiarity with the history of the bomb that most of the stories about it are “innovation” narratives. The Manhattan Project is often taken as one of the canonical cases of scientific and technological innovation (in ways that I find extremely misleading and annoying). We hunger for those stories of innovation, the stories of scientists, industry, and the military coming together to make something unusual and exciting. When we don’t think the weapons-acquisition is a good idea (e.g., in the Soviet Union, North Korea, what have you), these innovation stories take on a more sinister tone or get diluted by allusions to espionage or other “help.” But the template is the same. Richard Rhodes’ The Making of the Atomic Bomb is of course one of the greatest works of the innovation narrative of the atomic bomb, starting, as it does, with a virtual lightning bolt going off in the mind of Leo Szilard.2

How do you service a Titan II? Very carefully. This is a RFHCO suit, required for being around the toxic fuel and oxidizer. Not the most comfortable of outfits. From Penson's Titan II Handbook.

How do you service a Titan II missile? Very carefully. This is a RFHCO suit, required for being around the toxic fuel and oxidizer. Not the most comfortable of outfits. From Penson’s Titan II Handbook.

What would a history of the bomb look like if we focused on the question of “maintenance”? We don’t have to guess, actually: one already exists. Eric Schlosser’s Command and Control, which I reviewed on here and for Physics Today a few years ago, can be read in that light. Schlosser’s book is about the long-term work it takes to create a nuclear-weapons infrastructure, both in terms of producing the weapons and in terms of making sure they are ready to be used when you want them to be. And, of course, it’s about what can go wrong, either in the course of routine maintenance (the central case-study is that of a Titan II accident that starts when a “maintainer” accidentally drops a socket wrench) or just in the haphazard course of a technology’s life and interactions with the physical world (dropped bombs, crashed planes, things that catch on fire, etc.). (A documentary film based on Schlosser’s book premieres at the Tribeca Film festival this month, along with what sounds like a nuclear rave.)

There are other approaches we might fold into the “maintenance” of the bomb. Donald MacKenzie’s Inventing Accuracy uses the trope of invention, but the meat of the book is really about the way uncertainty about performance and reliability moved between the domains of engineering and policy. Hugh Gusterson’s anthropological study of the Livermore laboratory, Nuclear Rites, is particularly astute about the questions of the day-to-day work at a weapons laboratory and who does it. And the maintenance of infrastructure is a major sub-theme of Stephen Schwartz‘s classic edited volume on the costs of the nuclear complex, Atomic AuditBut these kinds of studies are, I think, rarer than they ought to be — we (and I include myself in this) tend to focus on the big names and big moments, as opposed to the slow-grind of the normal. 

There are two historical episodes that come to my mind when I think about the role of “maintenance” in the history of nuclear weapons. Non-coincidentally, both come at points in history where big changes were in the making: the first right after World War II ended, the second right after the Cold War ended.

Episode 1: The postwar slump

From the very beginning, the focus on the bomb was about its moment of creation. Not, in other words, on what it would take to sustain a nuclear complex. In our collective memory, a “Manhattan Project” is a story of intense innovation and creative invention against all odds. But there’s a lesser-known historical lesson in what happened right after the bombs went off, and it’s worth keeping in mind anytime someone invokes the need for another “Manhattan Project.”

The Manhattan Project, formally begun in late 1942, was consciously an effort to produce a usable atomic bomb in the shortest amount of time possible. It involved massive expenditure, redundant investigations, and involved difficult trade-offs between what would normally considered “research” and “development” phases. Plans for the first industrial-sized nuclear reactors, for example, were developed almost immediately after the first proof-of-concept was shown to work — normal stages of prototyping, scaling, and experimenting were highly compressed from normal industrial practices at the time, a fact noted by the engineers and planners who worked on the project. The rush towards realization of the new technology drove all other concerns. The nuclear waste generated by the plutonium production processes, for example, were stored in hastily-built, single-walled underground tanks that were not expected to be any more than short-term, wartime solutions.3 When people today refer to the Manhattan Project as a prototypical case of “throw a lot of money and expertise at a short-term problem,” they aren’t entirely wrong (even though such an association leaves much out).

J. Robert Oppenheimer (at right) was proud face of the successful "innovation" of the Manhattan Project. It is telling, though, that he left Los Alamos soon after the war ended. Source: Google LIFE image archive.

J. Robert Oppenheimer (at right) was proud face of the successful “innovation” of the Manhattan Project. It is telling, though, that he left Los Alamos soon after the war ended. Source: Google LIFE image archive.

After the end of World War II, though, the future of the American nuclear complex was uncertain. In my mind this liminal period is as interesting as the wartime period, though it doesn’t get as much cultural screen time. Would the US continue to make nuclear weapons? Would there be an agreement in place to limit worldwide production of nuclear arms (international control)? Would the atomic bomb significantly change US expenditures on military matters, or would it become simply another weapon in the arsenal? What kind of postwar organization would manage the wartime-creations of the Manhattan Project? No one knew the answers to these questions — there was a swirl of contradictory hopes and fears held by lots of different stakeholders.

We know, in the end, what eventually worked out. The US created the civilian Atomic Energy Commission with the Atomic Energy Act of 1946, signed by President Truman in August 1946 (much later than the military had hoped). Efforts towards the “international control” of the atomic bomb fizzled out in the United Nations. The Cold War began, the arms race intensified, and so on.

But what’s interesting to me, here, is that period between the end of the war and things “working out.” Between August 1945 and August 1946, the US nuclear weapons infrastructure went into precipitous decline. Why? Because maintaining it was harder than building it in the first place. What needed to be maintained? First and foremost, there were issues in maintaining the human capital. The Manhattan Project was a wartime organization that dislocated hundreds of thousands of people. The working conditions were pretty rough and tumble — even during the war they had problems with people quitting as a result of them. When the war ended, a lot of people went home. How many? Exact numbers are hard to come by, but my rough estimate based on the personnel statistics in the Manhattan District History is that between August 1945 and October 1946, some 80% of the construction labor left the project, and some 30% of the operations and research labor left. Overall there was a shedding of some 60% of the entire Manhattan Project labor force.

Declines in Manhattan Project personnel from July 1945 through December 1946. Note the dramatic decrease between August and September 1945, and the slow decrease until October 1946, after the Atomic Energy Act was passed and when things started to get on a postwar footing (but before the Atomic Energy Commission fully took over in January 1947).

Declines in Manhattan Project personnel from July 1945 through December 1946. Note the dramatic decrease between August and September 1945, and the slow decrease until October 1946, after the Atomic Energy Act was passed and when things started to get on a postwar footing (but before the Atomic Energy Commission fully took over in January 1947). Reconstructed from this graph in the Manhattan District History.

Now, some of that can be explained as the difference between a “building” project and a “producing” project. Construction labor was already on a downward slope, but the trend did accelerate after August 1945. The dip in operations and research, though, is more troublesome — a steep decline in the number of people actually running the atomic bomb infrastructure, much less working to improve it.

Why did these people leave? In part, because the requirements of a “crash” program and a “long-term” program were very different in terms of labor. It’s more than just the geographical aspect of people going home. It also included things like pay, benefits, and work conditions in general. During the war, organized labor had mostly left the Manhattan Project alone, at the request of President Roosevelt and the Secretary of War. Once peace was declared, they got back into the game, and were not afraid to strike. Separately, there was a prestige issue. You can get Nobel Prize-quality scientists to work on your weapons program when you tell them that Hitler was threatening civilization, that they were going to open up a new chapter in world history, etc. It’s exciting to be part of something new, in any case. But if the job seems like it is just about maintaining an existing complex — one that many of the scientists were having second-thoughts on anyway — it’s not as glamorous. Back to the universities, back to the “real” work.4

And, of course, it’s a serious morale problem if you don’t think you laboratory is going to exist in a year or two. When the Atomic Energy Act got held up in Congress for over a year, it introduced serious uncertainty as to the future of Los Alamos. Was Los Alamos solely a wartime production or a long-term institution? It wasn’t clear.

Hanford reactor energy output, detail. Note that it went down after late 1945, and they did not recover their wartime capacity until late 1948. Source: detail from this chart which I got from the Hanford Declassified Document System.

Hanford reactor energy output, detail. Note that it went down after late 1945, and they did not recover their wartime capacity until late 1948. Source: detail from this chart which I got from the Hanford Declassified Document System.

There were also technical dimensions to the postwar slump. The industrial-sized nuclear reactors at Hanford had been built, as noted, without much prototyping. The result is that there was still much to know about how to run them. B Reactor, the first to go online, started to show problems in the immediate postwar. Some of the neutrons being generated from the chain reaction were being absorbed by the graphite lattice that served as the moderator. The graphite, as a result, was starting to undergo small chemical changed: it was swelling. This was a big problem. Swelling graphite could mean that the channels that stored fuel or let the control rods in could get warped. If that happened, the operator would no longer be in full control of the reactor. That’s bad. For the next few years, B Reactor was run on low power as a result, and the other reactors were prevented from achieving their full output until solutions to the problem were found. The result is that the Hanford reactors had around half the total energy output in the immediate postwar as they did during the wartime period — so they weren’t generating as much plutonium.

To what degree were the technical and the social problems intertwined? In the case of Los Alamos we have a lot of documentation from the period which describes the “crisis” of the immediate postwar, when they were hemorrhaging manpower and expertise. We also have some interesting documentation that implies the military was worried about what a postwar management situation might look like, if it was out of the picture — if the nuclear complex was to be run by civilians (as the Atomic Energy Act specified), they wanted to make sure that the key aspects of the military production of nuclear weapons were in “reliable” hands. In any case, the infrastructure, as it was, was in a state of severe decay for about a year as these things got worked out.

I haven't even touched on the issues of "maintaining" security culture — what goes under the term "OPSEC." There is so much that could be said about that, too! Image source: (Hanford DDRS #N1D0023596)

I haven’t even touched on the issues of “maintaining” security culture — what goes under the term “OPSEC.” There is so much that could be said about that, too! Image source: (Hanford DDRS #N1D0023596)

The result of all of this was the greatest secret of the early postwar: the United States had only a small amount of fissile material, a few parts of other bomb components, and no ready-to-use nuclear weapons. AEC head David Lilienthal recalled talking with President Truman in April 1947:

We walked into the President’s office at a few moments after 5:00 p.m. I told him we came to report what we had found after three months, and that the quickest way would be to ask him to read a brief document. When he came to a space I had left blank, I gave him the number; it was quite a shock. We turned the pages as he did, all of us sitting there solemnly going through this very important and momentous statement. We knew just how important it was to get these facts to him; we were not sure how he would take it. He turned to me, a grim, gray look on his face, the lines from his nose to his mouth visibly deepened. What do we propose to do about it?5

The “number” in question was the quantity of atomic bombs ready to use in an emergency. And it was essentially zero.6 Thus the early work of the AEC was re-building a postwar nuclear infrastructure. It was expensive and slow-going, but by 1950 the US could once again produce atomic bombs in quantity, and was in a position to suddenly start producing many types of nuclear weapons again. Thus the tedious work of “maintenance” was actually necessary for the future work of “innovation” that they wanted to happen.

Episode 2: The post-Cold War question

Fast-forward to the early 1990s, and we’re once again in at a key juncture in questions about the weapons complex. The Soviet Union is no more. The Cold War is over. What is the future of the American nuclear program? Does the United States still need two nuclear weapon design laboratories? Does it still need a diverse mix of warheads and launchers? Does it still need the “nuclear triad”? All of these questions were on the table.

What shook out was an interesting situation. The labs would be maintained, shifting their efforts away from the activities we might normally associate with innovation and invention, and towards activities we might instead associate with maintenance. So environmental remediation was a major thrust, as was the work towards “Science-Based Stockpile Stewardship,” which is a fancy term for maintaining the nuclear stockpile in a state of readiness. The plants that used to assemble nuclear weapons have converted into places where weapons are disassembled, and I’ve found it interesting that the imagery associated with these has been quite different than the typical “innovation” imagery — the people shown in the pictures are “technicians” more than “scientists,” and the prevalence of women seems (in my anecdotal estimation) much higher.

The question of what to do with the remaining stockpile is the most interesting. I pose the question like this to my undergraduate engineers: imagine you were given a 1960s Volkswagen Beetle and were told that once you were pretty sure it would run, but you never ran that particular car before. Now imagine you have to keep that Beetle in a garage for, say, 20 or 30 more years. You can remove any part from the car and replace it, if you want. You can run tests of any sort on any single component, but you can’t start the engine. You can build a computer model of the car, based on past experience with similar cars, too. How much confidence would you have in your ability to guarantee, with near 100% accuracy, that the car would be able to start at any particular time?

Their usual answer: not a whole lot. And that’s without telling them that the engine in this case is radioactive, too.

Graph of Livermore nuclear weapons designers with and without nuclear testing experience. The PR spin put on this is kind of interesting in and of itself: "Livermore physicists with nuclear test experience are reaching the end of their careers, and the first generation of stockpile stewards is in its professional prime." Source: Arnie Heller, "Extending the Life of an Aging Weapon," Science & Technology Review (March 2012).

Graph of Livermore nuclear weapons designers with and without nuclear testing experience. The PR spin put on this is kind of interesting in and of itself: “Livermore physicists with nuclear test experience are reaching the end of their careers, and the first generation of stockpile stewards is in its professional prime.” Source: Arnie Heller, “Extending the Life of an Aging Weapon,” Science & Technology Review (March 2012).

Like all analogies there are inexact aspects to it, but it sums up some of the issues with these warheads. Nuclear testing by the United States ceased in 1992. It might come back today (who knows?) but the weapons scientists don’t seem to be expecting that. The warheads themselves were not built to last indefinitely — during the Cold War they would be phased out every few decades. They contain all sorts of complex materials and substances, some of which are toxic and/or radioactive, some of which are explosive, some of which are fairly “exotic” as far as materials go. Plutonium, for example, is metallurgically one of the most complex elements on the periodic table and it self-irradiates, slowly changing its own chemical structure.

Along with these perhaps inherent technical issues is the social one, the loss of knowledge. The number of scientists and engineers at the labs that have had nuclear testing experience is at this point approaching zero, if it isn’t already there. There is evidence that some of the documentary procedures were less than adequate: take the case of the mysterious FOGBANK, some kind of exotic “interstage” material that is used in some warheads, which required a multi-million dollar effort to come up with a substitute when it was discovered that the United States no longer had the capability of producing it.

So all of this seems to have a pretty straightforward message, right? That maintenance of the bomb is hard work and continues to be so. But here’s the twist: not everybody agrees that the post-Cold War work is actually “maintenance.” That is, how much of the stockpile stewardship work is really just maintaining existing capability, and how much is expanding it?

Summary of the new features of the B-61 Mod 12, via the New York Times.

Old warheads in new bottles? Summary of the new features of the B-61 Mod 12, via the New York Times.

The B-61 Mod 12 has been in the news a bit lately for this reason. The B-61 is a very flexible warhead system that allows for a wide range of yield settings for a gravity bomb. The Mod 12 has involved, among other things, an upgraded targeting and fuzing capability for this bomb. This makes the weapon very accurate and allows it to penetrate some degree into the ground before detonating. The official position is that this upgrade is necessary for the maintenance of the US deterrence position (it allows it, for example, to credibly threaten underground bunkers with low-yield weapons that would reduce collateral damage). So now we’re in a funny position: we’re upgrading (innovating?) part of a weapon in the name of maintaining a policy (deterrence) and ideally with minimal modifications to the warhead itself (because officially we are not making “new nuclear weapons”). Some estimates put the total cost of this program at a trillion dollars — which would be a considerable fraction of the total money spent on the entire Cold War nuclear weapons complex.

There are other places where this “maintenance” narrative has been challenged as well. The labs in the post-Cold War argued that they could only guarantee the stockpile’s reliability if they got some new facilities. Los Alamos got DARHT, which lets them take 3-D pictures of implosion in realtime, Livermore got NIF, which lets them play with fusion micro-implosions using a giant laser. A lot of money has been put forward for this kind of “maintenance” activity, and as you can imagine there was a lot of resistance. With all of it has come the allegations that, again, this is not really necessary for “maintenance,” that this is just innovation under the guise of maintenance. And if that’s the case, then that might be a policy problem, because we are not supposed to be “innovating” nuclear weapons anymore — that’s the sort of thing associated with arms races. For this reason, one major effort to create a warhead design that was alleged to be easier to maintain, the Reliable Replacement Warhead, was killed by the Obama administration in 2009.

"But will it work?" With enough money thrown at the problem, the answer is yes, according to Los Alamos. Source: National Security Science (April 2013).

“But will it work?” With enough money thrown at the problem, the answer is yes, according to Los Alamos. Source: National Security Science (April 2013).

So there has been a lot of money in the politics of “maintenance” here. What I find interesting about the post-Cold War moment is that “maintenance,” rather than being the shabby category that we usually ignore, has been moved to the forefront in the case of nuclear weapons. It is relatively easy to argue, “yes, we need to maintain these weapons, because if we don’t, there will be terrible consequences.” Billions of dollars are being allocated, even while other infrastructures in the United States are allowed to crumble and decline. The labs in particular have to walk a funny line here. They have an interest in emphasizing the need for further maintenance — it’s part of their reason for existence at this point. But they also need to project confidence, because the second they start saying that our nukes don’t work, they are going to run into even bigger policy problems.

And yet, it has been strongly alleged that under this cloak of maintenance, a lot of other kinds of activities might be taking place as well. So here is a perhaps an unusual politics of maintenance — one of the few places I’ve seen where there is a substantial community arguing against it, or at least against using it as an excuse to “innovate” on the sly.

Notes
  1. Andy and Lee just published a great article outlining their argument on Aeon Magazine: “Hail the maintainers.” []
  2. “In London, where Southampton Row passes Russell Square, across from the British Museum in Bloomsbury, Leo Szilard waited irritably one gray Depression morning for the stoplight to change. A trace of rain had fallen during the night; Tuesday, September 12, 1933, dawned cool, humid and dull. … The stoplight changed to green. Szilard stepped off the curb. As he crossed the street time cracked open before him and he saw a way to the future, death into the world and all our woe, the shape of things to come.” Richard Rhodes, The Making of the Atomic Bomb (New York: Simon and Schuster, 1986), 13. For a critical view of Rhodes, looking at how Rhodes’ mobilizes the trope of invention in his narrative, see esp. Hugh Gusterson, “Death of the authors of death: Prestige and creativity among nuclear weapons scientists,” in Mario Biagioli and Peter Galison, eds., Scientific authorship: Credit and intellectual property in science (New York: Routledge, 2003), 281-307. []
  3. J. Samuel Walker, The Road to Yucca Mountain: The Development of Radioactive Waste Policy in the United States (Los Angeles/Berkeley: University of California Press, 2009), 2-6. []
  4. Hence Edward Teller’s attempt to convince the scientists go to “back to the labs” to solve the H-bomb problem a few years later. []
  5. David E. Lilienthal, The Journals of David E. Lilienthal, Volume II: The Atomic Energy Years, 1945-1950 (New York: Harper and Row, 1964), p. 165. Side-note: As Lilienthal was leaving Truman’s office, Truman told him that, “You have the most important thing there is. You must making a blessing of it or,” — and then Truman pointed to a large globe in the corner of the office — “we’ll blow all that to smithereens.” []
  6. They had bomb cores, they had non-nuclear bomb assemblies, but there is little to suggest that they had anything ready to go on a short term — it would take weeks to assemble the weapons and get them into a state of readiness. The total cores on hand at Los Alamos at the end of 1945 was 2; for 1946 it was 9; for 1947 it was 13. Senator Brien McMahon later said that “when the [AEC] took over [in 1947] there were exactly two bombs in the locker,” Lilienthal himself later said that “we had one [bomb] that was probably operable when I first went off to Los Alamos [January 1947]; one that had a good chance of being operable.” Quoted in Gregg Herken, Brotherhood of the Bomb (New York: Henry Holt, 2002), 137 fn. 84. Lilienthal told Herken: “The politically significant thing is that there really were no bombs in a military sense… We were really almost without bombs, and not only that, we were without people, that was the really significant thing… You can hardly exaggerate the unreadiness of the U.S. military men at this time.” Quoted in Gregg Herken, The Winning Weapon: The Atomic Bomb in the Cold War (Princeton: Princeton University Press, 1988 [1981]), 196-197 (in the unnumbered footnote). []
News and Notes

Public lecture: “The Secret Histories of Laser Fusion”

Thursday, October 16th, 2014

Sorry for the radio silence last week! A lot has been going on over here. More on all that pretty soon. Tomorrow morning I will be putting up a post on the death of David Greenglass.

I wanted to let people in the greater New York City metro area know about a public lecture I am giving on Wednesday, October 29, 2014, as part of the New York City History of Science Society Consortium, at Columbia University.

Meeting of the New York City History of Science Society Consortium

Wednesday, October 29th, 2014, 6:00-7:30 PM

Faculty House, Columbia University, 64 Morningside Drive

Wellerstein - Laser fusion talk

“Clean, Limitless, Classified: The Secret Histories of Laser Fusion”

Alex Wellerstein, Stevens Institute of Technology

The invention of the laser and its proliferation in scientific settings created a unique problem for the United States government starting in the 1960s. The Cold War regime of nuclear secrecy had required an absolute legal distinction between “peaceful” civilian technology and “dangerous” military technology: the former needing wide dissemination and development by the private sector, the latter being tightly regulated under penalty of imprisonment and death. But the emergent technology of laser fusion began to challenge and blur these Cold War categories. For its proponents, which included both international scientists and private entrepreneurs, laser fusion held out the hope of clean, limitless power generation during a time of increasing energy instability. But at its heart was a form of physics that was, for government censors, far too near to the methods used in the design of advanced thermonuclear weapons. This talk will use newly declassified files to tell the international history of laser fusion in the 1960s and 1970s as a case study for looking at the unusual classification problems of late Cold War nuclear technology. 

This is a very fun talk, one I’ve been working on (and workshopping on) for a few years now. It is based on interviews with some of the pioneers of laser fusion technology, and a whole lot of documents I got declassified by the Department of Energy relating to the declassification of laser fusion technology in the 1970s, the KMS Fusion affair, and international development of inertial confinement fusion. In a world where some new fusion hype seems to be bursting out (or petering out) on a weekly basis, this is a history with more relevance than ever, and has some moments in it that are sure to shock and delight. For those who are more interested in the weapons side of the nuclear picture, there’s a lot going on related to that in this as well, in describing the back-and-forth between the work of H-bomb designs and the work on “civilian” applications, and the complete mess that this put the Atomic Energy Commission in as they tried to figure out their classification policies and priorities. There’s a lot going on in this one.

All are welcome — there doesn’t seem to be a need to RSVP. I don’t know if it is being recorded. I don’t think it is being streamed.

Visions

Advertising for weapons designers

Friday, December 14th, 2012

Advertising, annoying as it is in the present, is a great tool for looking at the past. You really do get a sense for what passed as acceptable, who people thought the ideal consumer was, and what kind of life people dreamed they could have, when you look at the elaborate construction of fantasy and insecurity that plays out in the advertising medium.1 This is one of the reasons it is especially galling, as an historian, that many digitized archives of past magazines or journals do not let you search advertising copy, or even — gasp! — have all advertising cut from them. This sort of thing is so irritating for historians, just passing that on.

Jack and Heintz missile systems ad, August 1958. See what you’re missing if you cut out the ads? No comment necessary.

Scientific American is a periodical whose online archival incarnation thankfully retains the ads. You can’t search them through the default search engine, but they’re in the PDFs. By downloading lots of PDFs in bulk (it can be done), you can then run searches for specific ad copy across all of them, or compile the individual articles into massive PDFs that roughly approximate a full bound set. (There are some ways in which having digital sources are a convenience — instant searching! — and some ways in which it is a pain — difficult browsing.)

During the Cold War, Scientific American was a major periodical, much more so than it is today. Its publisher since 1948, Gerard Piel, was not a scientist, but saw himself as an ideal Cold War liberal intellectual lay science enthusiast. He was anti-nuclear weapons and pro-nuclear power, if that helps solidify the type. In the 1950s he was anti-McCarthy and pro-Oppenheimer, by the 1970s he was criticized as being too old for the New Left. When he took over Scientific American, it was still being pitched at industrial researchers and tinkerers; under his management, it became something of a luxury “lifestyle magazine,” where the lifestyle in question was science.2

Of these early ads, the ones that really have gripped me in the past are the ones advertising for nuclear weapons scientists and for rocket scientists. They were advertisements that said — in fairly blunt language — that you’d be happier if you were making weapons of mass destruction. There’s something particularly American about that.

Without further ado, here are a few of my favorites, culled from issues of Scientific American from the 1950s:

How do you recruit a nuclear weapons designer? Los Alamos Scientific Laboratory tried a number of approaches. Some of these, like the one you see above from September 1956, emphasized that living out in the middle of nowhere could be “leisurely living,” and also emphasized the cool topics you’d get to work on: weapons physics, nuclear propulsion, etc. You’ve also got to admit that Los Alamos had a pretty cool logo at the time, as well. The “we work in an awesome place” pitch is one that Los Alamos would return to on a regular basis.

Los Alamos could also emphasize its history. It was over a decade old at this point, and had done some pretty important things. The above ad, from October 1956, has a wonderful message of “Los Alamos gets in the newspaper because it’s important” mixed in with an attempt to recruit young scientists.

Livermore, on the other hand, started out with a much more blunt approach: Got any new nuclear weapons ideas? Tying their work in with the work at Berkeley helped, of course — the Berkeley Rad Lab had at least as fabled a history as Los Alamos, and some of their later ads would do this even more explicitly.

To draw a contrast, take a look at this Sandia advertisement from May 1958. It’s more heady and ideological than the “come do science” and the “we have nice mountains” sorts of pitches:

For centuries men have tried to develop new and more powerful weapons to achieve victory in war. Lately these have been weapons of unprecedented power. Now war can become race suicide, and victory thus gained is a delusion. Yet we keep on trying to develop new and more powerful weapons, because we must. Not because we seek victory through a nuclear war, but because through strength we may prevent one. For as long as there are powerful forces with a record of cynical duplicity and oppression, the free world must have weapons capable of neutralizing them. At least until men learn that the only alternate to peace is oblivion. At Sandia, we play an important part in providing this protective strength…”

Although, for all of that rallying against “cynical duplicity and oppression,” a few months later (December 1958) a Sandia advertisement compared them to the Spanish Conquistadors — not exactly known for their peaceful ways. But lest you think this is the most politically incorrect form of scientist recruitment you might find from the period…

…Los Alamos had this one in the same issue. No comment here, other than the fact that this is obviously pre-Wen Ho Lee.

Los Alamos also had this wonderful little ad from April 1959, where the fact that they used obscure weapons-physics jargon was taken to show that they were on the cutting edge of science. It’s a rather clever advertising approach, you have to admit — taking what might otherwise be seen as a weakness and turning it into a strength. They didn’t use this tactic very often, though; other ads from this period had someone different messages, like “Scientists are people,” or “we do peaceful stuff, too.”

The gender stuff in some of these ads is incredible. This is an ad that ran a few times in 1958, recruiting for rocket scientists at the AC Spark Plug division of General Motors:

This is the Mrs. Behind the Missile… It takes a special kind of woman to be the wife of one of today’s missile men. … They know more about the problems of raising a family virtually alone than they do about the business of producing the missiles themselves. This advertisement is a tribute to the courage of such women, and to the very real contribution they are making to the development of a guided missile arsenal for this nation’s defense. … If you are such a woman, and your husband has engineering or scientific training which could make a contribution to this program, and is not a member of the armed forces, ask him to write — or write yourself — to the personnel section of AC in Milwaukee.

What’s most interesting to me about this one is that it, unlike most of the advertisements in Scientific American from this period, is written under the conceit that women are going to be reading the magazine. Most of the ads, it almost goes without saying, were pitched at white, scientifically-educated men. This one seems to be pitched at that guy’s wife. Which might seem progressive if it wasn’t a pitch for wives to sign their husbands up as rocket scientists so they could live a patriotic life in depressing isolation.

Douglas Aircraft was also on board with the “rocket scientist’s lifestyle” pitch, though it’s interesting how much more chummy it seems for men than was the one for women. This is from April 1957; it’s amazing how many of these rocket scientist ads were just pre-Sputnik. Things got so much crazier after Sputnik that it’s hard to forget that people were already pretty hyped up about rockets.

Douglas also used the “our work is so awesome it’s secret” pitch as well. “Look at all the nuclear-tipped missiles we’ve made! Actually, half of them are still secret!” I also really like the line, “These are the projects that require engineers who are looking far beyond tomorrow.” An impressive sounding bit of nonsense, no?

In the 1960s, Los Alamos’ as got a little more unusual — emphasizing that there was culture out where they worked. I’m not sure too many other places took this approach, though Los Alamos did it quite a few times. These ads are one part recruitment — meant to appeal — and one part projection. How much is the above ad actually soliciting scientists, and how much is it trying to say, “did you know that Los Alamos men appreciate art?

It’s a stark contrast from this sort of ad from Lockheed (October 1956), which makes it look like your non-science time there will be spent playing golf, tennis, or boating.

What to make of all of these? There are a lot of obvious — perhaps too obvious — observations here. Gender stuff. Lifestyle stuff. Technoscientific enthusiasm. You know. But what strikes me as most interesting here is that in some of these, there’s a bit of explicit rah-rah Cold War ideology, but mostly it is absent. Is this because ideology is messy, or because it could be taken for granted? That is, do you appeal to rad science and rad living conditions because you don’t want to turn off people who aren’t totally sold on WMDs, or do you assume that the only people who are going to apply have already made their peace with that idea? I don’t know — there’s only so much you can see on the surface of these ads, without delving into the processes of their creation, much less their success or failure. Still, as source materials, these sorts of ads are wonderful windows into the past — often as much or more so than the magazine content they abutted. And like all good windows into the past, they raise as many questions as they answer…

Notes
  1. There’s an obligatory Mad Men reference here, but I never got into the show so I’d probably bungle it. I’m more of a The Wire sort of guy when it comes to television shows, I’ve got to admit. []
  2. Everything I know about Scientific American and Gerard Piel comes from an excellent senior thesis I had the good fortunate to be an adviser for while I was at Harvard: Emma Benintende, “Who was the Scientific American? Science, Identity, and Politics through the Lens of a Cold War Periodical” (Senior thesis, Department of History of Science, Harvard University, 2011). []
Redactions

Re-examining the The Nth Country Experiment (1967)

Wednesday, January 4th, 2012

This week’s document is one that most nuclear wonks have seen before: the Summary Report of the Nth Country Experiment, produced by the Lawrence Livermore laboratory in 1967. It made a big splash when it was declassified in 2003, for good reason. Here was an official government study, from over 30 years ago, which said that there were essentially no secrets left when it came to designing nuclear weapons.1

Click image for full PDF.

The report summarizes the results of a 1964 “experiment,” in which Livermore hired two physics postdocs and had them try to come up with “a credible weapon design” based only on information in the public domain and computer support. A third postdoc was added a year later. The experiment ended in April 1967.

From a modern perspective, this is fascinating stuff. If three postdocs can design a nuclear weapon, then what’s to stop a terrorist? What’s the value of secrecy? Isn’t it amazing they were worried about this stuff almost 50 years ago?

But I think there are some more things to say about this.

Read the full post »

Notes
  1. Source: W.J. Frank, ed., “Summary Report of the Nth Country Experiment,” UCRL-50249 (March 1967), via the National Security Archive. []
Redactions

Archives Week, Day 4: Conspiring for Livermore (1952)

Thursday, December 22nd, 2011

Just a quick document for you today from the Legislative Archives: John Walker and Bill Borden, staff members on the Joint Committee on Atomic Energy, conspiring about creating a “second laboratory”: what would become the Livermore laboratory.1

Click image for the full PDF.

It’s a short piece, from early 1952, but I find it pretty revealing about the “second laboratory” mindset at the time. It’s desperation is what appeals to me: Walker is fed up with the Atomic Energy Commission and the General Advisory Committee, and have basically concluded that the only way forward would be to give a bunch of cash to “an eminent scientist” who would round up patriotic colleagues and start their own lab, independent of the AEC or GAC. Walker believes that this “non-government and non-military establishment” impetus “would be important from a moral standpoint.”

Where the cash would come from, and who the scientist would be, is left unconsidered.

It’s kind of a mad scheme, given that the AEC had a total legal monopoly on this kind of research. It also show the lengths these particular Congressional staffers were willing to go — they were aiming to play a hugely active role in national policy.


I want to give a hat-tip to a former student of mine from Harvard, Eli Jacobs, who is interning at the Center for Strategic and International Studies. He has a number of great posts up on the CSIS blog, but my favorite so far is a discussion of a 1978 Defense Nuclear Agency report where they recommended nuking the Chinese-Soviet border in the case of war, with the hope that this would encourage China to invade the USSR. It’s an impressively bad idea for a lot of reasons, and you know how much I like collecting impressively bad ideas.

Notes
  1. Source: John Walker to Bill Borden, “Second Laboratory,” (21 February 1952), in Records of the Joint Committee on Atomic Energy, RG 128, National Archives and Records Administration, Washington, D.C., Series 2: General Subject Files, Box 60, “Thermonuclear Program: Second Laboratory.” []