Posts Tagged ‘Leaks’

Visions

Death dust, 1941

Friday, March 7th, 2014

One of the biggest misconceptions that people have about the Manhattan Project is that prior to Hiroshima, all knowledge of atomic energy and nuclear fission was secret — that the very idea of nuclear weapons was unthought except inside classified circles. This is a side-effect of the narratives we tell about Manhattan Project secrecy, which emphasize how extreme and successful these restrictions on information were. The reality is, as always, more complicated, and more interesting. Fission had been discovered in 1939, chain reactions were talked about publicly a few months later, and by the early 1940s the subject of atomic power and atomic bombs had become a staple of science journalists and science fiction authors.

Campbell's magazine, Cartmill's story. Image source.

Leaks or speculation? Campbell’s magazine, Cartmill’s story. Image source.

John W. Campbell, Jr., was a prolific editor and publisher of science fiction throughout the mid-20th century. In the annals of nuclear weapons history, he is best known for publishing Cleve Cartmill’s story “Deadline” in March 1944, which talks about forming an atomic bomb from U-235. This got Cartmill and Campbell visitors from the FBI, trying to figure out whether they had access to classified information. They found nothing compromising (and, indeed, if you read Cartmill’s story, you can see that while it gets — as did many — that you can make atomic bombs from separated U-235, it doesn’t really have much truth in the specifics), but told Campbell to stop talking about atomic bombs.

But Campbell’s flirtation with the subject goes a bit deeper than that. Gene Dannen, who runs the wonderful Leo Szilard Online website, recently sent me a rare article from his personal collection. In July 1941, Campbell authored an article in PIC magazine with the provocative title, Is Death Dust America’s Secret Weapon?” It’s a story about radiological warfare in what appears to be rather middle-brow publication about entertainment. Click here to download the PDF. I don’t know anything about PIC, and haven’t been able to find much on it, but from the cover one wouldn’t necessarily expect it to be a source for people looking for hard-hitting science reporting — though the juxtaposition of DEATH DUST, “world’s strangest child,” and the “DAY DREAM” woman is a wonderfully American tableau.


PIC magazine 1941 - Campbell - Death Dust - cover

The story itself starts off with what has even by then become a clichéd way of talking about atomic energy (“A lump of U-235 the size of an ordinary pack of cigarettes would supply power enough to run the greatest bomb in the world three continuous years of unceasing flight“), other than the fact that it is one of the many publications that points out that after an exciting few years of talk about fission, by 1941 the scientists of the United States had clamped themselves up on the topic. The article itself admits none of this is really a secret, though — that all nations were interested in atomic energy to some degree. It vacillates between talking about using U-235 as a power source and using it to convert innocuous chemicals into radioactive ones.

Which is itself interesting — it doesn’t seem to be talking about fission products here, but “synthetic radium powders.” It’s a dirty bomb, but probably not that potent of one. Still, pretty exciting copy for 1941. (Campbell would much later write a book about the history of atomic energy, The Atomic Story, where he also spent a lot of time talking about “death dust.”)

The article contains a really wonderful, lurid illustration of what a city that had been sprayed with “horrible ‘death dust'” would look like:

"Even rats wouldn't survive the blue, luminescent radioactive dust. Vultures would be poisoned by their own appetites."

“Even rats wouldn’t survive the blue, luminescent radioactive dust. Vultures would be poisoned by their own appetites.”

The most interesting parts of the article are when it veers into speculation about what the United States might be doing:

With all the world seeking frantically for the secret of that irresistible weapon, what are America’s chances in the race?

It is a question of men and brains and equipment. Thanks to Hitler’s belief that those who don’t agree with him must be wrong, America now has nearly all the first-rank theoretical physicists of the world. Mussolini’s helped us somewhat, too, by exiling his best scientists. Niels Bohr, father of modern atomic theory, is at Princeton, along with Albert Einstein and others of Europe’s greatest.

The National Defense Research Committee is actively and vigorously supporting the research in atomic physics that seeks the final secrets of atomic power. Actively, because the world situation means that they must, yet reluctantly because they know better than anyone else can the full and frightful consequences of success. Dr. Vannevar Bush, Chairman of the Committee, has said: “I hope they never succeed in tapping atomic power. It will be a hell of a thing for civilization.”

Bohr was in fact still in occupied Denmark in July 1941 — he had his famous meeting with Heisenberg in September 1941 and wouldn’t be spirited out of the country until 1943. The photographs identify Harold Urey and Ernest Lawrence as American scientists who were trying to harness the power of atomic energy. Since Urey and Lawrence were, in fact, trying to do that, and since Vannevar Bush was, in fact, ostensibly in charge of the Uranium Committee work at this point, this superficially looks rather suggestive.

PIC magazine 1941 - death dust - scientists

But I think it’s just a good guess. Urey had worked on isotope separation years before fission was discovered (he got his Nobel Prize in 1934 for learning how to separate deuterium from regular hydrogen), so if you know that isotope separation is an issue, he’s your man. Lawrence was by that point known worldwide for his “atom smashing” particle accelerators, and had snagged the 1939 Nobel Prize for the work done at his Radiation Laboratory. If you were going to pick two scientists to be involved with nuclear weapons, those are the two you’d pick. As for Bush — he coordinated all of the nation’s scientific defense programs. So of course, if the US was working on atomic energy as part of their defense research, Bush would have to be in charge of it.

The other illustrations seem to be just generically chosen. They are particle accelerators of various sorts; one cyclotron and many electrostatic (e.g. Van De Graff) accelerators. Cyclotrons did have relevance to isotope separation — they were used to develop the Calutrons used at Y-12 — but the captions don’t indicate that this is why these machines are featured.

I’ve never seen any evidence that Campbell’s story in PIC came to any kind of official attention. Why not? In the summer of 1941, there was a lot of talk about U-235 and atomic energy — and Campbell’s article really isn’t the most provocative of the bunch. There wasn’t any official press secrecy of any form on the topic yet. “Voluntary censorship” of atomic energy issues, which is what would get Cartmill and Campbell in trouble later, didn’t start up until early 1943. Mid-1941 was still a time when a journalist could speculate wildly on these topics and not get visits from the FBI.

The irony is, there were official fears of a German dirty bomb, but they didn’t really crop up until 1942. But the American bomb effort was starting to get rolling in the late summer of 1941. By the end of 1941, Bush would be a convert to the idea of making the bomb and would start trying to accelerate the program greatly. It wasn’t the Manhattan Project, yet, but it was on its way. Campbell’s article was, in this sense, a bit ahead of its time.

A Campbell publication from 1947 — where he apparently has a better understanding of atomic power. Here he seems to have just scaled down a Hanford-style "pile" and added a turbine to it. It took a little more effort than that in reality...

A Campbell publication from 1947 — where he apparently has a better understanding of atomic power. Here he seems to have just scaled down a Hanford-style “pile” and added a turbine to it. It took a little more effort than that in reality…

What I find most interesting about Campbell’s article is that it reveals what the informed, amateur view of atomic energy was like in this early period. Some aspects of it are completely dead-on — that U-235 is the important isotope, that isotope separation is going to matter, that places with particle accelerators are going to play a role, that the acquisition of uranium ore was about to get important, that fears of German use of atomic energy existed. But parts of it are completely wrong — not only would dirty bombs not play a role, he doesn’t seem to understand that fission products, not irradiated substances, would play the strongest role. He doesn’t really seem to understand how nuclear power would be harnessed in a reactor. He doesn’t really seem to get fission bombs at all.

This mixture of accuracy and confusion, of guess and folly, tells us a lot about the state of public knowledge at the time. Atomic energy was a topic, it was an idea — but it wasn’t yet something tangible, a reality. So when people found out, in 1945, that the United States had made and detonated atomic fission bombs, they were primed to understand this as the beginning of a “new era,” as the realization of something they had been talking about for a long time — even if the details had been secret.

Meditations

Liminal 1946: A Year in Flux

Friday, November 8th, 2013

There are lots of important and exciting years that people like to talk about when it comes to the history of nuclear weapons. 1945 obviously gets pride of place, being the year of the first nuclear explosion ever (Trinity), the first  and only uses of the weapons in war (Hiroshima and Nagasaki), and the end of World War II (and thus the beginning of the postwar world). 1962 gets brought up because of the Cuban Missile Crisis. 1983 has been making a resurgence in our nuclear consciousness, thanks to lots of renewed interest in the Able-Archer war scare. All of these dates are, of course, super important.

Washington Post - January 1, 1946

But one of my favorite historical years is 1946. It’s easy to overlook — while there are some important individual events that happen, none of them are as cataclysmic as some of the events of the aforementioned years, or even some of the other important big years. But, as I was reminded last week while going through some of the papers of David Lilienthal and Bernard Baruch that were in the Princeton University archives, 1946 was something special in and of itself. It is not the big events that define 1946, but the fact that it was a liminal year, a transition period between two orders. For policymakers in the United States, 1946 was when the question of “what will the country’s attitude towards the bomb be?” was still completely up for grabs, but over the course of the year, things became more set in stone.

1946 was a brief period when anything seemed possible. When nothing had yet calcified. The postwar situation was still fluid, and the American approach towards the bomb still unclear.

Part of the reason for this is because things went a little off the rails in 1945. The bombs were dropped, the war had ended, people were pretty happy about all of that. General Groves et al. assumed that Congress would basically take their recommendations for how the bomb should be regarded in the postwar (by passing the May-Johnson Bill, which military lawyers, with help from Vannevar Bush and James Conant, drafted in the final weeks of World War II). At first, it looked like this was going to happen — after all, didn’t Groves “succeed” during the war? But in the waning months of 1945, this consensus rapidly deteriorated. The atomic scientists on the Manhattan Project who had been dissatisfied with the Army turned out to make a formidable lobby, and they found allies amongst a number of Senators. Most important of these was first-term Senator Brien McMahon, who quickly saw an opportunity to jump into the limelight by making atomic energy his issue. By the end of the year, not only did Congressional support fall flat for the Army’s Bill, but even Truman had withdrawn support for it. In its place, McMahon suggested a bill that looked like something the scientists would have written — a much freer, less secret, civilian-run plan for atomic energy.

So what happened in 1946? Let’s just jot off a few of the big things I have in mind.

January: The United Nations meets for the first time. Kind of a big deal. The UN Atomic Energy Commission is created to sort out questions about the future of nuclear technology on a global scale. Hearings on the McMahon Bill continue in Congress through February.

Igor Gouzenko (masked) promoting a novel in 1954. The mask was to help him maintain his anonymity, but you have to admit it adds a wonderfully surreal and theatrical aspect to the whole thing.

Igor Gouzenko (masked) promoting a novel in 1954. The mask was to help him maintain his anonymity, but you have to admit it adds a wonderfully surreal and theatrical aspect to the whole thing.

February: The first Soviet atomic spy ring is made public when General Groves leaks information about Igor Gouzenko to the press. Groves wasn’t himself too concerned about it — it was only a Canadian spy ring, and Groves had compartmentalized the Canadians out of anything he considered really important — but it served the nice purpose of dashing the anti-secrecy lobby onto the rocks.

Also in February, George F. Kennan sends his famous “Long Telegram” from Moscow, arguing that the Soviet Union sees itself in essential, permanent conflict with the West and is not likely to liberalize anytime soon. Kennan argues that containment of the USSR through “strong resistance” is the only viable course for the United States.

March: The Manhattan Engineer District’s Declassification Organization starts full operation. Groves had asked the top Manhattan Project scientists to come up with the first declassification rules in November 1945, when he realized that Congress wasn’t going to be passing legislation as soon as he expected. They came up with the first declassification procedures and the first declassification guides, inaugurating the first systematic approach to deciding what was secret and what was not.

Lilienthal's own copy of the mass-market edition of the Acheson-Lilienthal Report, from the Princeton University Archives.

Lilienthal’s own copy of the mass-market edition of the Acheson-Lilienthal Report, from the Princeton University Archives.

March: The Acheson-Lilienthal Report is completed and submitted, in secret, to the State Department. It is quickly leaked and then was followed up by a legitimate publication by the State Department. Created by a sub-committee of advisors, headed by TVA Chairman David Lilienthal and with technical advice provided by J. Robert Oppenheimer, the Acheson-Lilienthal Report argued that the only way to a safe world was through “international control” of atomic energy. The scheme they propose is that the United Nations create an organization (the Atomic Development Authority) that would be granted full control over world uranium stocks and would have the ability to inspect all facilities that used uranium in significant quantities. Peaceful applications of atomic energy would be permitted, but making nuclear weapons would not be. If one thought of it as the Nuclear Non-Proliferation Treaty, except without any authorized possession of nuclear weapons, one would not be too far off the mark. Of note is that it is an approach to controlling the bomb that is explicitly not about secrecy, but about physical control of materials. It is not loved by Truman and his more hawkish advisors (e.g. Secretary of State Byrnes), but because of its leak and subsequent publication under State Department header, it is understood to be “the” position of the United States government on the issue.

April: The McMahon Act gets substantial modifications while in committee, including the creation of a Military Liaison Committee (giving the military an official position in the running of the Atomic Energy Commission) and the introduction of a draconian secrecy provision (the “restricted data” concept that this blog takes its name from).

June: The Senate passes the McMahon Act. The House starts to debate it. Several changes are made to the House version of the bill — notably all employees with access to “restricted data” must now be investigated by the FBI and the penalty for misuse or espionage of “restricted data” is increased to death or life imprisonment. Both of these features were kept in the final version submitted to the President for signature in July.

June: Bernard Baruch, Truman’s appointee to head the US delegation of the UN Atomic Energy Commission, presents a modified form of the Acheson-Lilienthal Report to the UNAEC, dubbed the Baruch Plan. Some of the modifications are substantial, and are deeply resented by people like Oppenheimer who see them as torpedoing the plan. The Baruch Plan, for example, considered the question of what to do about violations of the agreement something that needed to be hashed out explicitly and well in advance. It also argued that the United States would not destroy its (still tiny) nuclear stockpile until the Soviet Union had proven it was not trying to build a bomb of their own. It was explicit about the need for full inspections of the USSR — a difficulty in an explicitly closed society — and stripped the UN Security Council of veto power when it came to enforcing violations of the treaty. The Soviets were, perhaps unsurprisingly, resistant to all of these measures. Andrei Gromyko proposes a counter-plan which, like the Baruch Plan, prohibits the manufacture and use of atomic weaponry. However, it requires full and immediate disarmament by the United States before anything else would go into effect, and excludes any international role in inspection or enforcement: states would self-regulate on this front.

Shot "Baker" of Operation Crossroads — one of the more famous mushroom clouds of all time. Note that the mushroom cloud itself is not the wide cloud you see there (which is a brief condensation cloud caused by it being an underwater detonation), but is the more bulbous cloud you see peaking out of the top of that cloud. You can see the battleships used for target practice near base of the cloud. The dark mark on the right side of the stem may be an upturned USS Arkansas.

Shot “Baker” of Operation Crossroads — one of the more famous mushroom clouds of all time. Note that the mushroom cloud itself is not the wide cloud you see there (which is a brief condensation cloud caused by it being an underwater detonation), but is the more bulbous cloud you see peaking out of the top of that cloud. You can see the battleships used for target practice near base of the cloud. The dark mark on the right side of the stem may be an upturned USS Arkansas.

July: The first postwar nuclear test series, Operation Crossroads, begins in the Bikini Atoll, Marshall Islands. Now this is a curious event. Ostensibly the United States was in favor of getting rid of nuclear weapons, and in fact had not yet finalized its domestic legislation about the bomb. But at the same time, it planned to set off three of them, to see their effect on naval vessels. (They decided to only set off two, in the end.) The bombs were themselves still secret, of course, but it was decided that this event should be open to the world and its press. Even the Soviets were invited! As one contemporary report summed up:

The unique nature of the operation was inherent not only in its huge size — the huge numbers of participating personnel, and the huge amounts of test equipment and number of instruments involved — it was inherent also in the tremendous glare of publicity to which the tests were exposed, and above all the the extraordinary fact that the weapons whose performance was exposed to this publicity were still classified, secret, weapons, which had never even been seen except by a few men in the inner circles of the Manhattan District and by those who had assisted in the three previous atomic bomb detonations. It has been truly said that the operation was “the most observed, most photographed, most talked-of scientific test ever conducted.” Paradoxically, it may also be said that it was the most publicly advertised secret test ever conducted.1

August: Truman signs the McMahon Act into law, and it becomes the Atomic Energy Act of 1946. It stipulates that a five-person Atomic Energy Commission will run all of the nation’s domestic atomic energy affairs, and while half of the law retains the “free and open” approach of the early McMahon Act, the other half has a very conservative and restrictive flavor to it, promising death and imprisonment to anyone who betrays atomic secrets. The paradox is explicit, McMahon explained at the time, because finding a way to implement policy between those two extremes would produce rational discussion. Right. Did I mention he was a first-term Senator? The Atomic Energy Commission would take over from the Manhattan Engineer District starting in 1947.

A meeting of the UN Atomic Energy Commission in October 1946. Bernard Baruch is the white-haired man sitting at the table at right behind the “U.S.A” plaque. At far top-right of the photo is Robert Oppenheimer. Two people above Baruch, in the very back, is General Groves. Directly below Groves is Manhattan Project scientist Richard Tolman. British physicist James Chadwick sits directly behind the U.K. representative at the table.

A meeting of the UN Atomic Energy Commission in October 1946. At front left, speaking, is Andrei Gromyko. Bernard Baruch is the white-haired man sitting at the table at right behind the “U.S.A” plaque. At far top-right of the photo is a pensive J. Robert Oppenheimer. Two people above Baruch, in the very back, is a bored-looking General Groves. Directly below Groves is Manhattan Project scientist Richard Tolman. British physicist James Chadwick sits directly behind the U.K. representative at the table.

September: Baruch tells Truman that international control of atomic energy seems nowhere in sight. The Soviet situation has soured dramatically over the course of the year. The Soviets’  international control plan, the Gromyko Plan, requires full faith in Stalin’s willingness to self-regulate. Stalin, for his part, is not willing to sign a pledge of disarmament and inspection while the United States is continuing to build nuclear weapons. It is clear to Baruch, and even to more liberal-minded observers like Oppenheimer, that the Soviets are probably not going to play ball on any of this, because it would not only require them to forswear a potentially important weapon, but because any true plan would require them to become a much more open society.

October: Truman appoints David Lilienthal as the Chairman of the Atomic Energy Commission. Lilienthal is enthusiastic about the job — a New Deal technocrat, he thinks that he can use his position to set up a fairly liberal approach to nuclear technology in the United States. He is quickly confronted by the fact that the atomic empire established by the Manhattan Engineer District has decayed appreciably in year after the end of the war, and that he has powerful enemies in Congress and in the military. His confirmation hearings start in early 1947, and are exceptionally acrimonious. I love Lilienthal as an historical figure, because he is an idealist who really wants to accomplish good things, but ends up doing almost the opposite of what he set out to do. To me this says a lot about the human condition.

November: The US Atomic Energy Commission meets for the first time in Oak Ridge, Tennessee. They adopt the declassification system of the Manhattan District, among other administrative matters.

December: Meredith Gardner, a cryptanalyst for the US Army Signal Intelligence Service, achieves a major breakthrough in decrypting wartime Soviet cables. A cable from 1944 contains a list of scientists working at Los Alamos — indications of a serious breach in wartime atomic security, potentially much worse than the Canadian spy ring. This information is kept extremely secret, however, as this work becomes a major component in the VENONA project, which (years later) leads to the discovery of Klaus Fuchs, Julius Rosenberg, and many other Soviet spies.

On Christmas Day, 1946, the Soviet Union’s first experimental reactor, F-1, goes critical for the first time.

The Soviet F-1 reactor, in 2009. It remains operational today — the longest-lived nuclear reactor by far.

The Soviet F-1 reactor, in 2009. It remains operational today — the longest-lived nuclear reactor by far.

No single event on that list stands out as on par with Hiroshima, the Cuban Missile Crisis, or even the Berlin Crisis. But taken together, I think, the list makes a strong argument for the importance of 1946. When one reads the documents from this period, one gets this sense of a world in flux. On the one hand, you have people who are hoping that the re-ordering of the world after World War II will present an enormous opportunity for creating a more peaceful existence. The ideas of world government, of the banning of nuclear weapons, of openness and prosperity, seem seriously on the table. And not just by members of the liberal elite, mind you: even US Army Generals were supporting these kinds of positions! And yet, as the year wore on, the hopes began to fade. Harsher analysis began to prevail. Even the most optimistic observers started to see that the problems of the old order weren’t going away anytime soon, that no amount of good faith was going to get Stalin to play ball. Which is, I should say, not to put all of the onus on the Soviets, as intractable as they were, and as awful as Stalin was. One can imagine a Cold War that was less tense, less explicitly antagonistic, less dangerous, even with limitations that the existence of a ruler like Stalin imposed. But some of the more hopeful things seem, with reflection, like pure fantasy. This is Stalin we’re talking about, after all. Roosevelt might have been able to sweet talk him for awhile, but even that had its limits.

We now know, of course, that the Soviet Union was furiously trying to build its own atomic arsenal in secret during this entire period. We also know that the US military was explicitly expecting to rely on atomic weapons in any future conflict, in order to offset the massive Soviet conventional advantage that existed at the time. We know that there was extensive Soviet espionage in the US government and its atomic program, although not as extensive as fantasists like McCarthy thought. We also know, through hard experience, that questions of treaty violations and inspections didn’t go away over time — if anything, I think, the experience of the Nuclear Non-Proliferation Treaty has shown that many of Baruch’s controversial changes to the Acheson-Lilienthal Report were pretty astute, and quickly got to the center of the political difficulties that all arms control efforts present.

As an historian, I love periods of flux and of change. (As an individual, I know that living in “interesting times” can be pretty stressful!) I love looking at where old orders break down, and new orders emerge. The immediate postwar is one such period — where ideas were earnestly discussed that seemed utterly impossible only a few years later. Such periods provide little windows into “what might have been,” alternative futures and possibilities that never happened, while also reminding us of the forces that bent things to the path they eventually went on.

Notes
  1. Manhattan District History, Book VIII, Los Alamos Project (Y) – Volume 3, Auxiliary Activities, Chapter 8, Operation Crossroads (n.d., ca. 1946). []
Redactions

Heisenberg’s Dresden story: A wartime atomic mystery

Friday, October 11th, 2013

One of the weirdest stories I’ve come across regarding the Nazis and the atomic bomb is the one that the German physicist Werner Heisenberg told at Farm Hall about being asked about an apparent rumor that the United States was planning to use an atomic bomb against Dresden.

The Farm Hall transcripts reports him telling it several times during his internment, and it changed slightly each time he told it. Here’s the first version:

About a year ago, I heard from Segner from the Foreign Office that the Americans had threatened to drop a uranium bomb on Dresden if we didn’t surrender soon. At the time I was asked whether I thought it possible, and, with complete conviction, I replied: “No.

In a later version, he says he replied that it was possible — perhaps a face-saving maneuver, since by the second time Heisenberg tells the story, he has now started to believe that the reports of the atomic attack against Hiroshima were accurate.

My initial inclination is to think of this as strange idle chatter amongst a group of interned German scientists. A little bit of rumor-swapping, bragging about being in-the-know and being someone worth consulting. But I don’t think Heisenberg just made it up. That’s not really his style, I don’t think, and he repeated it several times over the course of their six month stay at Farm Hall.

Physikalische Blaetter, August 1944

Recently, while looking into some other wartime leaks, I came across an interesting follow-up on this story. The leak in question is a weird one and worth sharing. In August 1944, a German science magazine, the Physikalische Blätter (Physical Newspaper/Gazette/Pages), ran a short, anonymous piece titled “Another Utopia“:1

Transocean Service transmits a report cabled to “Stockholm’s Tidnigen” from London: “In the United States scientific research for a new bomb is underway. The material is uranium, and if the forces bound in this element could be liberated, explosive forces of so far unimagined power could be created. A 5-kilogram bomb could made a hole one kilometer deep and with a radius of 40 kilometers. In a circle of 150 kilometers all buildings were be smashed.”2

That’s a pretty weird thing to just appear in a German magazine, no? To save you the effort: their math on the energy release is way off by any measure — the damage radius described is well over 100 megatons, which is around what you’d get if you combined 5 kg of uranium with 5 kg of anti-matter (a pure E=mc2 conversion), much less if it fissioned with perfect efficiency (which would “only” release 85 kilotons).3 Either they’ve carried a few decimal points incorrectly or they’re just really confused. I suspect the latter.

Was this a “legitimate” leak? That is, did it derive from disclosure of confidential information? It’s hard to tell. The fact that it pinpoints the United States as making an atomic bomb out of uranium seems accurate, but everything else seems to be sketchy and confused. It’s true that the plutonium bomb used only around 6 kg of material… but that almost seems like a coincidence given the rest of what they’re talking about here. I’m inclined to file this under “fantastic atomic energy rumors” which were common even before the discovery of fission.

Werner Heisenberg, later in life

Werner Heisenberg, later in life

Anyway. The interesting bit comes 20 years later, in 1964. Physikalische Blätter was (and is) still around, and they ran a story on their wartime leak story. Much of it is repetitive fluff, a by-the-book (for 1964) accounting of Allied and German nuclear research. But along with this, they did attempt to track down the origin of the leak — with no success. But they did decide, thoughtfully, to try and assess the impact of the leak by surveying a few of the Farm Hall physicists to see whether they were aware of the “Another Utopia” story.

Otto Hahn wrote back that he “knew nothing” of the article at the time, and added that while they knew that there were people abroad probably working on the subject of atomic bombs, and that the stopping of all publications about the subject probably indicated the work was secret, that nonetheless they didn’t suspect that the United States would actually be able to produce such weapons in time for use in the war. He then suggested that the Physikalische Blätter should get in touch with Heisenberg, since he was more plugged into such matters than Hahn.4

And they did get in touch with Heisenberg, whose first response was that he hadn’t seen the article, was surprised to hear about it, suspected it was based on “vague rumors,” but said he would love if they sent him a copy so he could evaluate it further.5 They did this, of course, and his second response was the more interesting one. He said that rumors of this sort occurred repeatedly because of articles related to atomic energy that had already been published, and he did not let such rumors occupy him much during the war. But then Heisenberg wrote (my awkward translation — original German is in the footnotes):

Perhaps I should mention here an exception. In the summer of 1944 (probably early July), an aide of Göring’s came to me with a message from a German representative in Lisbon that there was a pronounced American threat against the German government, that an atomic bomb would be dropped on Dresden in the next six weeks if the government did not immediately sue for peace. The exact conditions of where the message came from were not communicated to me. I was asked by Göring’s adjutant if I thought it was possible that the Americans had already created an atomic bomb. I was understandably made very uncomfortable by this question, because of the large responsibility connected to my answer. I said that I thought it was extremely unlikely, but not impossible, for the Americans to have such a weapon at this time, and I tried to explain that the production of the weapon would in any case require an enormous industrial effort, and that I could not imagine that the Americans had already done it.6

And so the Dresden atomic bomb rumor raises its head again, no less confounding than before! But here we have a little more information on the source: it is supposedly from an agent in Lisbon, Portugal. Which is interesting.

General Groves not amused

General Groves is not amused by spies or leaks

Because as Stan Norris communicated to me when I wrote about German espionage efforts, there was a Nazi double-agent in Lisbon who was assigned to learning about the Manhattan Project. Stan has since sent me a “note to file” that General Groves had written about a meeting he had with the Military Policy Committee on June 21, 1944, where he describes this incident and his response to it. In his notes, Groves wrote the following:

This refers to the German agents who came to this country through Portugal, and the messages that were sent back to Germany in their behalf. These people were picked up as soon as they got into the United States and the messages were framed by me. There was considerable argument by my creeps as to these messages. I overruled them and did not deny that certain work was being done. It was pinpointed at certain universities and certain people, none of whom had anything to do with the project. The amount of the work was minimized, and an attempt to convince the Germans that it was an academic effort and that nothing would come of it. The creeps wanted to say that nothing was being done and that checks at various places had indicated that all potential personnel was being used on other work — I think radar.7

Ah, so now this gets really interesting, right? Because this coincides very well with the timing of Heisenberg’s supposed query — apparently originating in Nazi agents in Portugal — regarding whether Dresden would be atomic bombed! (And no, I don’t know why he calls whomever he is talking to “creeps.”)

Obviously I don’t have the whole story here, but the geographical and chronological proximity is a rather impressive overlap, is it not? Could something have gone wrong, or gotten scrambled, in Groves’ attempt to manipulate one of the few German atomic espionage attempts? I.e., Groves had wanted to suggest that the American program was small and unimportant; somebody instead reported back that it was massive and almost ready to go. It seems not impossible, though this is admittedly scant evidence. Either way, it’s clear that Groves would have been mighty mad to find out this question was being asked of Heisenberg.

But, here’s the twist. Arguably the exaggerated outcome would have been (and in fact was!) as good an outcome as Groves’ intended minimization, if not a better one! Heisenberg looked at the six-weeks-to-an-atomic-Dresden claim and said, no way — that doesn’t make any sense. He came away from the whole thing convinced it was just ridiculous wartime nonsense. If the report he had gotten was, “do you believe that the only people working on nuclear fission are a bunch of no-names, instead of Bethe and Fermi and Oppenheimer and Wheeler and all of those other physics luminaries we know the Americans have?,” might that not have raised his suspicions even more?

Of course, that doesn’t explain where Dresden, specifically, would have come into the picture. So there’s still something missing here. And it should be noted that Lisbon was a notorious hub of espionage activity for both sides during the war — so it isn’t necessarily the same guy. So some sobriety intrudes.

Dresden after the firebombing, 1945

Dresden after the firebombing, 1945

Lastly, is it possible the Dresden threat could have been real? The Physikalische Blätter story got picked up by the Washington Post, and they got in touch with Richard G. Hewlett, the Atomic Energy Commission’s official historian. He thought Heisenberg’s story was pretty nuts: “I can’t possibly believe there was an actual threat from the U.S. Government.”8 This was, obviously, because the US was still a year away from an atomic bomb at the time, and the idea of it being some kind of legitimate, diplomatic threat seems pretty out of character. Though do remember that Roosevelt asked Groves about using the bomb against Germany in December 1944 — so maybe, somewhere, this kind of idea was kicking around inside the heads of some people who knew about the Manhattan Project work but didn’t know how close it was to completion — maybe even someone who was working some kind of diplomatic/espionage backchannel. I don’t know.

As it was, Dresden was of course catastrophically attacked. Over the course of three days in February 1945, some 1,250 Allied heavy bombers pounded the city with incendiaries and high explosives, killing well over 20,000 people and burning the heart out of a city that until that point had been spared the horrors of area bombing. Could Dresden have been kept “pristine” on the theory that it might have been a good atomic bombing target, in the same way that Hiroshima, Nagasaki, Kokura, and Niigata had been? The Physikalische Blätter speculated that maybe this was the case, though there is no evidence that supports this conclusion.9 I doubt it, personally — the selection of Dresden as a target has its own trajectory that seems independent of any possible atomic narrative, and the idea that it would have been selected as a possible atomic bomb target as early as the summer of 1944 seems rather far-fetched. It should be noted, as well, that the narrative about the atomic bomb in mid-1960s Germany was very much tinged by the Cold War context; it was a common thread of discussion in both the West and the East that the United States would be willing to throw Germany under the bus if it came to a real confrontation with the Soviets.

Still, it’s an interesting constellation of stories: the leak, Heisenberg’s query, and Groves’ attempt at misinformation. If Groves’ misinformation attempt was really did result in the query to Heisenberg, what tremendous irony would abound. Ironic that Groves’ attempt to minimize the effort would result in a exaggerated interpretation; irony that the exaggerated interpretation would lead to total dismissal by the expert.

Notes
  1. Noch eine Utopie,” Physikalische Blätter 1, No. 8 (1944), 118. I was surprised to find all of PB online and without a paywall. This particular article is appended to a longer report on “Science and War.” []
  2. “Transozean-Innendienst verbreitet eine Nachricht, die sich “Stockholms Tidningen” aus London melden läßt: “In den Vereinigten Staaten werden wissenschaftliche Versuche mit einer neuen Bombe ausgeführt. Als Material dient Uran, und wenn die gebundenen Kräfte in diesem Element frei würden, dann könnten Sprengwirkungen· von bisher nicht geahnter Kraft erzeugt werden. Eine 5-kg-Bombe könnte dann ein Loch von 1 km Tiefe und 40 km Radius hervorbringen. In einem Umkreis von 150 km würden alle festen Gebäude in Trümmer gehen.” []
  3. The rule of thumb is that the completely fissioning of a kilogram of fissile material produces about 17 kilotons of yield. []
  4. “Ich wußte gar nichts von dem Inhalt des Artikels im Augustheft 1944 der Physikalischen Blätter, und so möchte ich daraus schließen, daß er mir auch damals nicht bekannt war. Wir alle waren natürlich während des Krieges der Meinung, daß man im Ausland, vor allem in Amerika, wohl an einer Herstellung von Atombomben arbeiten wird, denn es wurden ja auch in Deutschland Vorversuche darüber gemacht mit dem Versuch der Aufstellung eines Atomreaktors. Und da nach Kriegsanfang alle Publikationen aus dem Gebiete aufhörten, schlossen wir natürlich, daß im Ausland geheime Arbeiten gemacht würden. Andererseits glaubte keiner von uns, daß während der Kriegszeit eine Atombombe fertiggestellt werden könnte. Ich erinnere mich an das Erstaunen, das wir alle hatten, als wir von der Bombe im August 1945 in englischer Gefangenschaft erfuhren. Da Prof. Heisenberg der Vorsitzende des sogen. Uran-Vereins war, also die Arbeiten zur Herstellung eines Kernreaktors geleitet hat, ist wohl Herr Heisenberg die beste Quelle, zu erfahren, ob jemand von uns die Mitteilung in den Phys. Blättern kennt.” Otto Hahn, quoted in E. Brüche, “Was wußte man 1943/44 in Deutschland von der Atombombe?Physikalische Blätter 20, No. 5 (1964), 220-225, on 222. []
  5. “Sie schreiben davon, daß in den Phys. Blättern bereits 1944 eine Notiz über die amerikanischen Versuche mit Atombomben erschienen sei. Dies ist mir völlig neu, aber zugleich interessant und unbegreiflich; denn die ersten amerikanischen Atombombenversuche haben ja bekanntlich im Frühjahr 1945 stattgefunden. Es kann sich also eigentlich nur um ziemlich vage Vermutungen gehandelt haben. Ich wäre Ihnen sehr dankbar, wenn Sie mir eine Kopie jenes Artikels in den Phys. Blättern zukommen lassen könnten; dann kann ich besser beurteilen, ob ich diesen Artikel jemals gesehen habe und wie ich darauf reagiert habe.” Werner Heisenberg, quoted in E. Brüche, “Was wußte man 1943/44 in Deutschland von der Atombombe?” Physikalische Blätter 20, No. 5 (1964), 220-225, on 222. []
  6. “An die von Ihnen erwähnte Notiz in den Phys. Blättern aus dem Jahr 1944 konnte ich mich nicht mehr erinnern, aber Gerüchte dieser Art sind – schon aufgrund des Flüggeschen Artikels in den “Naturwissenschaften” – immer wieder aufgetreten und haben mich daher nicht allzu sehr beschäftigt. Vielleicht sollte ich hier eine Ausnahme erwähnen. Im Sommer 1944 (wahrscheinlich Anfang Juli) kam einmal der Adjutant von Göring zu mir mit der Mitteilung, es sei über die deutsche Vertretung in Lissabon eine amerikanische Drohung gegen die deutsche Regierung ausgesprochen worden, es werde innerhalb der nächsten sechs Wochen eine Atombombe über Dresden abgeworfen werden, wenn die Regierung nicht in irgendeiner Art um Frieden bäte. über den genauen Inhalt der Bedingungen wurde mir nichts mitgeteilt. Ich wurde von dem Adjutanten Görings gefragt, ob ich es für möglich hielte, daß die Amerikaner bereits über eine Atombombe verfügten. Mir war diese Frage begreiflicherweise sehr unangenehm, weil mit der Antwort auf jeden Fall eine große Verantwortung verbunden war. Ich habe dann gesagt, daß ich es zwar für außerordentlich unwahrscheinlich, aber nicht für völlig unmöglich hielte, daß die Amerikaner zu diesem Zeitpunkt über eine solche Waffe verfügten, und habe versucht zu erklären, daß die Herstellung der Waffe auf jeden Fall einen enormen industriellen Aufwand erfordern müßte, von dem ich mir nicht denken könnte, daß die Amerikaner ihn schon geleistet hätten.” Ibid. An article on uranium fission by Siegfried Flügge appeared in Die Naturwissenschaften in June 1939; Heisenberg cites this as the reason for all of the speculation. Flügge himself was asked about the “Another Utopia” article as well and he responded with a diatribe about how nobody credits him for anything. []
  7. Leslie Groves, Notes on the Military Policy Committee of June 21, 1944 (undated, but prior to 1964), Leslie R. Groves Papers, National Archives and Records Administration, RG 200, Entry 7530M, Box 4, “Working Papers.” Courtesy of Robert S. Norris. []
  8. Howard Simons, “Were We Vulnerable: Swedish Report in World War II Tipped U.S. A-Bomb Hand,” Washington Post (27 December 1964), E3. Simons’ story butchers many of the facts, including getting the nationality of Physikalische Blätter wrong (which PB took issue with in its reprinting of it), and even misspells Hewlett’s name. []
  9. “Dresden – Schicksal und Warnung,” Physikalische Blätter 21, no. 4 (1965), 196. []
Redactions

The worst of the Manhattan Project leaks

Friday, September 20th, 2013

We live in an era where the press regularly rejoices in printing “national security secrets,” via leaks, as an evidence of its “watchdog” status. This isn’t exactly a new thing, of course. Press leaks and investigations have been around for quite a long time, and ever since the example of Woodward and Bernstein, this has become the ultimate symbol of journalistic power and access. But it does feel like it has accelerated somewhat in the last decade, both in terms of frequency and magnitude of such “antagonistic leaks” (as opposed to, say, “official leaks” — the kind that are secretly sanctioned for whatever reason). I’ve sometimes heard people suggest that were the press like this during World War II, things like the secret of the atomic bomb could never have been kept as well as they were. And while there is something to that, in the sense that American journalists were far more cooperative and acquiescent during the 1940s, it also projects a rosier picture backwards than ever truly existed. Even during the Manhattan Project, there were copious leaks. Some small, some huge.

Saturday Evening Post, November 1945.

Saturday Evening Post, November 1945 — one of the postwar articles lauding the Manhattan Project as the “best-kept secret,” or, in this case, “the big hush-hush.”

During World War II, the United States had a program of voluntary press censorship, coordinated by the Office of Censorship. It was, as stated, voluntary: there were no fines or threats attached to it, just stern official rebuke. It lacked “teeth.” It worked primarily by the Office of Censorship publicly releasing long lists of prohibited topics, and occasionally trying to squelch violating stories before they were syndicated. As such, it was a little clunky, something that usually went into effect after the fact.

The worst violation came in March 1944. John Raper, a reporter for the Cleveland Press, while on vacation in New Mexico, somehow stumbled upon one of the biggest, most secret stories of the day. Below I reprint the entirety of the article — it nearly speaks for itself, both in its security violations and its strange rambling nature. Some commentary follows; minor comments are in the footnotes. The images have been ordered to correspond with the text, not necessarily how they were laid out on the page.1

1944 - Forbidden City - Masthead

THE CLEVELAND PRESS – MONDAY, MARCH 13, 1944

Forbidden City

Uncle Sam’s Mystery Town Directed by “2nd Einstein”

Jack Raper, Press columnist, has returned to Cleveland following a vacation in New Mexico, where he found the following story.

By JOHN W. RAPER

SANTA FE, N.M. — New Mexico has a mystery city, one with an area from eight to 20 square miles, according to guesses. It has a population of between 5000 and 6000 persons, not more than probably half a dozen of whom can step outside of the city except by special permission of the city boss. He grants permission only in the most exceptional circumstances and under the most rigid conditions. And it is even more difficult for a non-resident to enter than for a resident to leave.2

Commonly known as Los Alamos, the place is a thoroughly modern city. It has fine streets, an electric light plant and waterworks with capacity for a city twice as large as Los Alamos, a service department that really services, public library, high, grade, and nursery schools; recreation centers, hospital, apartment houses, cottages, dance hall, an enormous grocery, refrigeration plant, factories and jail.

If you like mysteries and have a keen desire to solve one, here is your opportunity to do a little sleuthing, and if you succeed in learning anything and then making it public you will satisfy the hot curiosity of several hundred thousand New Mexicans.

But you might as well be informed that you will fail and the chances are thousands to one that you will be caught and will be thrown into the hoosegow or suffer a worse fate.3

A Free Country, But —

Of course, this is a free country and you can go where you please — if you are willing to sleep in the smoking car aisle or breathe the exhalations of your fellow sardines packed in a bus. But forget all about that sort of nonsense.

If you have any idea that you can employ a battery of eminent constitutional lawyers and go into court and that eventually the Supreme Court of the United States will decide the case in your favor if the lower courts decide against you, forget about that, too. you would be wasting your time and burning up any money you paid to the lawyer, for the man who owns this city has too much money and too much power in such a legal action.

This city’s site, or at least part of it, at once time was occupied by a private school for boys,4 and is not far from the village of Los Alamos, which is 53 miles almost due east from Santa Fe, the state capital.5 It is in one of the most interesting sections of New Mexico. It has scenery enough for a whole state — peaks and peaks and more peaks, and cliffs and colors that dim the rainbow.

Not far away are the Indian villages occupied by the finest kind of Indians, intelligent, industrious, friendly, skilled in the production of art objects, many of them graduates of Indian schools.

1944 - Forbidden City - Image 2

Cliff Dwelling Remnants

Within a short distance are the remnants of cliff dwellings, excavated ruins of pueblos centuries old, so old that men who have made scientific studies of them will say, when talking of their ages, “They may be,” “Probably,” “Estimates vary,” “We are pretty certain, but—.”

Shortly after the man who thinks he is going to the mystery city of Los Alamos reaches the level on which it is built, he will see, if he looks into the windshield mirror, a man following him on a motorcycle not many feet behind the car and he will be in the same position when the gate is reached. The instant the car stops there is a man directly in front of it and a man on each side. The three men are in military uniform and each has a rifle.

Then you realize that the owner of this strange city is Uncle Sam and you make no kind of protest and answer questions politely. If you have gone through all of the preliminary red tape previously and have been notified that you will be admitted, the men at the gate will know all about you and there will be little delay after you show the necessary papers.

Escorted by 2 Jeeps

You will be escorted to the office of the man whom you are to meet, escorted by two jeeps, one in front and one behind your car, men in each jeep armed with rifles. En route you will notice that the city is fenced in and that mounted soldiers patrol it and you will see scores of buildings.

When you transact your business you will be carefully escorted out of the city, taking the same route as when you entered. If you are a New Mexican and on your return to your home town it becomes known that you were in Los alamos everybody will ask, “What did you see?” The answer will be, “Nothing.” And if anyone asks, “Did you learn what is going on there?” the answer will be, “I don’t know a bit more about it than I did before I went.” Both answers will be true.

Uncle Sam has placed this in charge of two men. The man who commands the soldiers, who sees that the garbage and rubbish are collected, the streets kept up, the electric light plan and the waterworks functioning and all other metropolitan work operating smoothly is a Col. Somebody.6 I don’t know his name, but it isn’t so important because the Mr. Big of the city is a college professor, Dr. J. Robert Oppenheimer, called “the Second Einstein” by the newspapers of the west coast.7

1944 - Forbidden City - Image 3

Residents Must Stay

Dr. Oppenheimer is a Harvard graduate, attended Cambridge a year, received a Ph.D. from Gottingen University, Germany; is professor of physics at the University of California and the California Institute of Technology, and is a “fellow” of too many organizations to enumerate.8

It is the work of Prof. Oppenheimer and the hundreds of men and women in his laboratories and shops that makes Los Alamos such a carefully guarded city. All the residents will be oblige to remain there for the duration and for six months thereafter and it seems quite probable that many of them don’t know much more about what is being done than you do.9

It is gossip that no one mechanic is permitted to finish a piece of work. He starts to make something and it is passed at a certain point in its production to another, who goes a little further with the work and passes it to another and so on until the article is finished.10

One of the public’s guesses is that nothing but research is done.

Thousands believe the professor is directing the development of chemical warfare, so that if Hitler tries poison gas Uncle Sam will be ready with a more terrifying one.11

1944 - Forbidden City - Image 1

Tell of Huge Explosions

Another widespread belief is that he is developing ordnance and explosives. Supporters of this guess argue that it accounts for the number of mechanics working on the production of a single device and there are others who will tell you tremendous explosions have been heard.12

The most interesting story is that Prof. Oppenheimer is working on a beam that will cause the motors to stop so that German planes will drop from the skies as though they were paving blocks.13

In support of this there are stories of the experiences of automobile drivers in the vicinity of Los Alamos. According to these their radios and motors stopped suddenly at the same instant and after 15 or 20 minutes suddenly began to operate as usual.14

Names of the drivers are frequently given, but when I asked “Did any of them tell you, or did you get it secondhand?” the answer invariably was, “Well, he didn’t tell me. A friend of mine told me about it.”

And if you say, “Did you ask your friend if the driver who had the experience told him?” The answer is generally, “Well, I didn’t ask that question.”

One of these days Prof. Oppenheimer may tell the newspapers about what he has done at Los Alamos, there may be another now-it-can-be-told book or the secretary of war may hand out the report made to him. And who knows but that the eminent physicist may deliver an address at the Cleveland City Club or the Rotary Club?

If you’d rather see it in the original spread, uploaded here is my copy of it from the archives. Note the original is a photostat and has black/white reversed, which is why it is a bit washed out after photographing (shop talk: it is very hard to photograph old photostats because they are on glossy paper and thus reflective, so you have to take pictures of them under shadows).

Why do I consider this the worst? Not because it says, in any straight terms, that atomic bombs are being made. But look at the suggestions it is giving to potential spies:

  • It identifies (with some geographical error) the name and location of an obviously classified scientific/military facility
  • It gives an approximate and plausible size of the facility, which gives some hint of its importance
  • It emphasizes the amount of compartmentalization going on at the facility, which again hints at its importance
  • It correctly identifies the scientific director, which to an observed eye would narrow it down to something relating to theoretical physics
  • It reports local accounts of explosive testing on site

If I were a spy thinking about nuclear weapons, I would find that a pretty interesting combination of things, and worth following up on. Of course, it also has a healthy dose of confusion, nonsense, and just plain silliness mixed into it. But even a ray gun that stopped airplanes, or a chemical weapons plant, might be of interest to enemy spies. (Much less Allies who you don’t want snooping around, like the Soviets.) The article has just enough ring of authenticity to it to suggest that something serious was going on at Los Alamos — which makes it much more dangerous than something that was wilder yet potentially closer to the truth.

General Groves — not amused.

General Groves — not amused.

The Manhattan Project security apparatus was not amused. Col. Ashbridge, the military head of Los Alamos, sent a copy to Groves a few days after it was published, noting that he had heard that Groves was already aware of it and that it had been shown to Oppenheimer. Ashbridge wrote:15

We are naturally much perturbed about it and Major [Peer] de Silva [Los Alamos security head] is preparing a memorandum to Lt Col [John] Lansdale [Manhattan Project security head] as to the source of the data collected by the reporter while vacationing in Albuquerque and Santa Fe. There are many rumors around town about this project since thousands of construction workers from this vicinity have been employed at Los Alamos, many of our personnel go into town for shopping and weekends, and Dr. Oppenheimer’s name is fairly well known in Santa Fe.

In discussing this with Major de Silva, he indicated that he felt the “leak” was not something we could have prevented, but that the reporter had doubtless picked up some local gossip, and put it together with information on Dr Oppenheimer in “Who’s Who.”

The late A.J. Connell [director of the Los Alamos Ranch School] informed me several months ago that everyone in Santa Fe knew some sort of scientific project was underway at Los Alamos, but that curiosity had died down when no one found out anything more after several months, and they just accepted us without trying to guess what was done.

The action of the newspaper in printing such an article shows a complete lack of responsibility, compliance with national censorship code and cooperation with the Government in keeping an important project secret. It is hoped that some steps can be taken to deny the paper certain privileges as a result of their disclosure of this project in such an article.

So what did Groves end up doing? First he made sure that it wouldn’t spread further — he put the kibosh on any follow-up stories or further syndication. Time magazine was going to write a follow-up regarding West Coast atom smashing work, but the Office of Censorship stopped them. Then he had the reporter investigated and interviewed. For awhile he thought about getting Raper drafted to the Pacific Theatre — a rather bloodthirsty approach to the problem. He relented on this when, as it turned out, Raper was in his sixties. Not exactly Army grunt material.16

Did the Axis powers notice this? If they did, they don’t seem to have done much with it. Which highlights an important aspect of Manhattan Project secrecy, in a way: how lucky it was. There were a tremendous number of puzzle pieces out there for an enemy power to notice and put together regarding the bomb effort. It was not quite so perfectly secret as we often talk of it as being. We know it was possible to put some of the pieces together, because the Soviets did it, and even a few others did it. (I’m in the process of writing an article about some of the successful efforts, so more on that later.) Groves wanted a hegemonic, all-encompassing, all-controlling secrecy regime. Understandably, he couldn’t accomplish that — but he pulled off just enough that, with a bit of luck, the project stayed more or less below the water line.

Notes
  1. Source: John W. Raper, “Forbidden City,” (13 March 1944) The Cleveland Press. Photostat copy in Manhattan Engineer District records, Records of the Army Corps of Engineers, Record Group 77, National Archives and Records Administration, Box 99, “Investigation Files.” []
  2. While entry to Los Alamos was heavily restricted, many more than “half a dozen” people were allowed to leave. []
  3. This guy is impressively flip, eh? []
  4. The Los Alamos Ranch School. []
  5. Los Alamos is 35 miles northwest of Santa Fe. []
  6. Probably a reference to Col. Whitney Ashbridge, the post commander of the Los Alamos site. Ashbridge had replaced the original military head, Col. John Harman, because the latter had difficulty getting along with the scientists. Ashbridge himself was replaced by Col. Gerard Tyler in late 1944, after Ashbridge’s health began to fail because of the strain brought on by the job. See Vincent C. Jones, Manhattan: The Army and the Atomic Bomb (US Government Printing Office, 1985), 486, 497-498. []
  7. Something of an exaggeration, of course — Oppenheimer’s purely scientific achievements never rivaled Einstein’s. Still, there is some irony in the fact that Oppenheimer would in the postwar take a position as the Director of the Institute for Advanced Study, in the Princeton, New Jersey, and as such effectively become Einstein’s boss. For more on Einstein and Oppenheimer, see S.S. Schweber, Einstein and Oppenheimer: The Meaning of Genius (Harvard University Press, 2010). []
  8. Manhattan Project security speculated that this information came from Oppenheimer’s Who’s Who entry. No comment on whether this “fellow” was a “fellow traveler” or not… []
  9. Again, I don’t really know where he gets this “sealed in” argument from. It is not correct. But it is true that most of the residents were not aware of the final goal of the project. []
  10. This is an exaggeration of the compartmentalization policy, but not so off the mark. Henry Smyth once joked to the New Yorker that because he ran two different divisions in the project, he was not allowed by rules to talk to himself. []
  11. Not entirely off the mark, either in actual purpose or analogy. The first Los Alamos-like installation that I have heard of dates from World War I, the so-called “Mousetrap” factory in Cleveland, where Lewisite (an arsenic-based chemical weapon) was produced. James B. Conant worked on that project. []
  12. Very, very close to the mark. The explosives heard may be related to the implosion studies, which had begun in the summer of 1943. []
  13. The idea of motor-stopping beams is one that pops up in numerous places during speculation about enemy science during World War II. I have even read stories that have said the technology was obvious, though I have no idea what it might have been. []
  14. No, not an electromagnetic pulse. Aside from the fact that no nuclear weapons had been set off by March 1944, the nuclear EMP at ground level is a very short-range effect compared to the blast effects, and if your car was really damaged by an EMP it would not start back up again in 15 minutes. []
  15. Whitney Ashbridge to Leslie R. Groves (18 March 1944), Manhattan Engineer District records, Records of the Army Corps of Engineers, Record Group 77, National Archives and Records Administration, Box 99, “Investigation Files.” []
  16. Patrick S. Washburn, “The Office of Censorship’s Attempt to Control Press Coverage of the Atomic Bomb During World War II,” Journalism Monographs 120 (1990), 1-43, on 11-12, and 37 fn. 43. See also Robert S. Norris, Racing for the Bomb: General Leslie R. Groves, The Manhattan Project’s Indispensable Man (Steerforth Press, 2002), 275-276. []
Redactions

Bethe argues against the MIKE test (1952)

Wednesday, June 20th, 2012

Hans Bethe's Los Alamos ID badgeTo say that Hans Bethe was a fascinating character would be something of colossal understatement. His stance on the hydrogen bomb is one of the most enigmatic: in early 1950, he strongly lobbied against Truman’s “crash” program. Two weeks after Truman’s announcement on the H-bomb (and the unveiling of Klaus Fuchs, which was almost simultaneous), Bethe wrote to the Chairman of the Atomic Energy Commission, Gordon Dean, explaining that:

The announcement of the President has not changed my feelings in this matter. I still believe that it is morally wrong and unwise for our National security to develop this weapon. … The main point is that I can not in good conscience work on this weapon.1

But, for complicated reasons that Sam Schweber has discussed in his classic book, In the Shadow of the Bomb: Oppenheimer, Bethe, and the Moral Responsibility of the Scientist (Princeton University Press, 2000)Bethe eventually changed his position and played a key role in the development of the Super bomb. Why? Initially he hoped that he could prove that it couldn’t be done — which was certainly the case with Teller’s initial “Classical Super” plan that so much effort was expended on. But it was not long until a better way was found. (Sam’s newest book, Nuclear Forces: The Making of the Physicist Hans Bethe, covers Bethe’s earlier years. I’ve no doubt it’s a good read.)

On Monday, I indicated that I really think that US could have not ordered an H-bomb crash program in1950 and come out pretty well on top of things even if the Soviets had roared ahead with their own program. Last Wednesday, I talked about how the test of the first H-bomb in November 1952, Ivy MIKE, leaked out almost immediately, despite attempts to keep it secret.

For today, I want to share a document in between these two dates: a letter by Hans Bethe, written to Gordon Dean, from September 1952. Bethe’s subject: why the US should postpone the testing of MIKE.2

Click for the PDF.

Why would Bethe want the first H-bomb not to be tested? Interestingly, it wasn’t because of any argument about the arms race — perhaps not a surprise, given that by this time, Bethe was firmly of the position that the H-bomb was “inevitable” since it did appear to be workable.

No, it was about Politics with a capital “P.” The Operation Ivy test schedule was for November 1 — just three days before voting day in the 1952 Presidential election. In Bethe’s view, this was too close:

Ever since I came here [Los Alamos] last February, I have been concerned about the choice of the date for the thermonuclear test, November 1. …

The first danger is, of course, that this test might in some manner be injected into the election campaign. I do not believe that the Presidential candidates themselves would do so but there are many others that might, for instance members of Congress or newspaper columnists. If the test is carried out on November 1, if it is successful, and if this fact becomes known, the danger is very great that it will be used as campaign material. 

Now I don’t believe that it will be an effective argument in the campaign; in fact, I think it is unpredictable which party would benefit from it, regardless of how or by whom the topic is raised. But I am worried that some politicians of either party might believe that it would help their side. We all know that emotions run high in a campaign, especially towards its close. Demagogic statements may be made at such a time which the speaker himself will later regret.

But this short term problem was only part of the problem:

The least of the troubles which would arise from such speeches is that they might make atomic energy and atomic weapons a partisan issue. Much more serious is the possibility that the public would be led to believe that the accomplishment of a thermonuclear reaction had made us invincible, that we could now take chances in foreign policy and perhaps even risk a major war. It would take a long time to correct this impression, and in trying to do so, we would be unable to use some of the most potent arguments because they are classified. A few words said in the heat of battle can thus do permanent damage to the public attitude on this matter.

So this is an interesting connection to make: the use of the H-bomb as a talking point in the heat of an election could lead to a complete misunderstanding of the H-bomb itself. Note that it’s not an argument for secrecy: it’s an argument against testing the first H-bomb in the middle of an election. 

Courtesy of the AIP Emilio Segre Visual Archives

But “the most important reaction” in Bethe’s view would be that of the international community:

If our test becomes publicly known, and I think the chances for this are enhanced if it is held during the election campaign, it will undoubtedly give food to the Communist propaganda machine. This propaganda is apt to be quite effective because I believe that the knowledge of a successful thermonuclear test will create fear in the countries of Western Europe rather than confidence. A few belligerent or merely incautious remarks by some people in this country will play into the hands of Communist propaganda by convincing many otherwise friendly people abroad that this is an important step towards our starting a war. “Neutralism” will be  strengthened, to an extent that it may influence the policy of European governments and become very hard to deal with. There is of course no guarantee that inappropriate remarks will not be made outside of a campaign, but the danger is much greater during it.

The connection between this and the domestic election, again, is that the election season would make the chances of a leak — and sensationalism — much higher than any other point in time. (Bethe also notes that this isn’t just about the Presidential candidates — there were plenty of Congressmen up for re-election as well.)

Bethe also thought that a leak was going to be likely whenever you had the test, because, frankly, it’s hard to keep something as big as an H-bomb a secret.

If there is no disclosure, the test may still become public knowledge because of large fall-outs, visual observations from Kwajalein, or possibly observations of shock or seismic phenomena. Whichever may be the method of revelation, the evidence of a test with enormous yield combined with a lot of previous discussion in the columns of newspapers will almost undoubtedly lead the public to the right conclusion.

At the very least, Bethe thought it should be postponed until November 5, the day after the election, if not longer. (Bethe’s ideal date was November 15.)

The rest of the letter concerns whether the Presidential candidates should be informed about the prospective test. Bethe figures this should be easy; both Eisenhower and Adlai Stevenson were trustworthy figures. Bethe thought Oppenheimer would be a great guy to give them the head’s up.

Bethe could see only benefit to delaying it. Changing the date of the shot might increase the chances slightly of bad weather, but not much. “The effect of a postponement by two weeks or a month on the general thermonuclear program of the Laboratory would be almost unnoticeable.”

As we know, this suggestion went unheededand the news of the test did leak almost immediately to the press.

Well, it was a little conspicuous.

Butsurprisingly, none of the leaks hit the newspapers until November 7, 1952, when a story by Elton C. Fay went out on the AP wire.3 (Eye-witness stories began running on November 8.4)

It’s hard not to see this as anything other than restraint on behalf of those at the press who had known about the success of Ivy MIKE within hours of the test. And here Bethe thought they couldn’t keep a secret! Well, they could keep it for almost a week, anyway.

Curiously, an event did happen in between that time that engendered H-bomb speculation — and it didn’t have anything to do with the election, or even the H-bomb test itself. On November 4, 1952, a massive 9.0 earthquake occurred off of Kamchatka, the Russian peninsula north of Japan. The result was a tsunami for Japan and 13 foot waves in Hawaii. It was the third-largest earthquake of the 20th century, according to USGS.

Kamchatka quake map (Daily Boston Globe, November 5, 1952)

At least one major newspaper’s story about the quake was devoted to speculation as to whether it was a hydrogen bomb or not:

A senior Canadian Government scientist said it is not impossible that the earthquake was in reality the explosion of a hydrogen bomb. “It’s one possibility,” he said, but it’s pretty well down the list. It’s theoretically possible, but pretty hard to believe. I’m assuming it’s an earthquake until something else is proved.”5

Of course, in that instance, it would be far more likely to be a Soviet bomb than an American one (unless the Americans were getting exceedingly bold), but in any case, it’s an interesting coincidence — one that, with a little prodding, could have revealed the fact that an H-bomb had in fact been tested in the Pacific only a few days before.

Read the footnotes to this post to see the leaked, eye-witness account of MIKE…

Notes
  1. Hans Bethe to Gordon Dean (14 February 1950), copy in the Nuclear Testing Archive, Las Vegas, NV, document NV0125241. []
  2. Citation: Hans Bethe to Gordon Dean (9 September 1952), copy in the Nuclear Testing Archive, Las Vegas, NV, document NV0409418. []
  3. The Fay story appeared under different headlines — and sometimes without a by-line — in many newspapers, e.g. “H-Bomb Test Explosion in Pacifc Hinted,” Los Angeles Times (7 November 1952), 1. []
  4. The anonymous “eye-witness account” is pretty wonderful, in and of itself. From a version of the story carried in the Washington Post:

    The blast, the letter said, was viewed through dark glasses and “appeared a huge orange ball, which grew larger and brighter until it appeared as if no dark glasses where there at all.”

    Intense heat was felt almost immediately, the writer continued, adding:

    “The ball of fire started to rise and slowly lose its intensity. We took off our glasses and saw water vapor suddenly form around the column. Then it rushed into the base of the column and up, clearing the air so that you could see countless tons of water rushing skyward.

    “The column went up and up and finally mushroomed. About three minutes later the report, like a nearby cannon shot, hit us and was followed by several seconds of dull rumbling . . .

    “All we could do was stand there and gasp in amazement and awe at the enormous size and force released before us. Typical comment from old timers: ‘Holy cow! That sure makes the A-bomb a runt.’

    “And so I saw the first H-bomb explode.”

    “‘First H-bomb Blast’ Described in Letter,” Washington Post (9 November 1952), M7. []

  5. “13-Foot Hawaii Waves Follow Siberia Quake,” Daily Boston Globe (5 November 1952), 1. []