Posts Tagged ‘Speculation’

Meditations

When bad history meets bad journalism

Wednesday, January 7th, 2015

A lot of people have been passing around the latest news story about the supposed “Nazi nuclear bunker” that was supposedly discovered in Austria. Normally I would not comment at length about such a thing, originating from tabloids and so obviously (to my eye) devoid of serious merit. But since the passing around has even made it to more austere publications (like the Washington Post) and because a number of people have asked me informally what I thought about it, I thought I could take it as an opportunity to talk about what bad history of the bomb looks like.

The Sunday Times (UK) version of the "bunker" story.

The Sunday Times (UK) version of the “bunker” story.

Cheryl Rofer has compiled some of the basics of the story on Nuclear Diner. The basics are this: an Austrian filmmaker named Andreas Sulzer has been trying to make a film about an Austrian bunker that dates from World War II. He has been claiming there was a nuclear connection to this bunker, and gotten some headline-grabbing tabloid stories about it, since 2013. What’s the evidence for it being a nuclear site? He claims that he has an American intelligence document from 1944 that lists it as a site of possible interest. He has made vague claims about radioactivity. It is part of an existing weapons production plant (a factory that produced rocket engines). Some physicists might have been sent there. Did we mention there was a bunker?

Yeah. That’s it. This stuff is pretty obviously thin, but let’s just say: Allied intelligence about German nuclear sites in 1944 was poor and scattered and means nothing. Radiation is everywhere and can fluctuate from a variety of natural and artificial sources — only by talking about levels of radiation do we start to wonder if something unusual is occurring, and only by talking about specific radioactive isotopes can we start to really wonder if any given radiation is of interest to us or not. (This is not hard to do — there are hand-held devices that can both measure radiation intensity and determine the isotopes in about 30 seconds, these days.1) The fact that it is part of an existing plant is probably evidence against it being a super-secret nuclear installation (compartmentalization). And physicists were involved in practically every technical program during World War II, so their presence tells us nothing one way or the other.

Forbes' version of the same story from February 2014.

Forbes’ version of the same story from February 2014.

The obvious thinness of this evidence, and the obvious motivation of the filmmaker — who has been denied a permit to dig around the site — should already be a sign to any self-respecting journalist that this is not worth touching. Certainly not without talking to some other experts about it. The only person anyone seems to have called up is Rainer Karlsch, whose own work on the German nuclear program is extremely controversial (Karlsch claims the Germans detonated some kind of dirty bomb or pure-fusion bomb — also on very thin evidence). For all of his outsized claims, at least Karlsch did his homework and tries to marshall evidence for his work. I don’t think Karlsch’s evidence fits the strength of his claims, and there are real technical problems with Karlsch’s reasoning, but there is at least a serious scholarly discussion to be had there. There is not one to be had (at least, not yet) about the Sulzer claims, because there is no there there. Karlsch’s only quoted comment is that he thinks the Germans got further along with their nuclear program than most people think (to be addressed below), and doesn’t comment on the Sulzer claims at all — which makes it not really a supporting comment for Sulzer at all.2

But if you slap “Nazi” and “nuclear” onto something, it gets a lot of hits, and that’s what appears to be the motivation here both for the Sunday Times and the many other sources that have picked up the same story and run it without checking in with anybody else to see whether it is even plausible. Which is a sad state of things.

December 2013 version of the story, from the Daily Mail (UK).

December 2013 version of the story, from the Daily Mail (UK).

There is a bunker. No credible evidence has actually been offered to make one think it has a nuclear connection. That the Germans had large underground bunkers for technical projects is well-known — that they had them for their nuclear program is not, because there is no evidence of this. (They did do some reactor work in some caves towards the end of the war, but it was small scale.) Newspapers should stop passing this kind of nonsense around… especially since it is not even “news” at this point — the bunker story has been circulating for over 2 years, without any additional increase in credibility!

About two or three times a year I get contacted by people who are working on things relating to the German or Japanese wartime nuclear programs. The appeal is obvious: there is a built-in audience for this kind of thing, and there are still areas of uncertainty with regards to these programs. I have written on here in the past on a few of the questions I’ve stumbled into with regards to the German program, for example. We don’t know everything about these programs, and there are reasons to think that there is still more to learn. So I’m always willing to engage with people on these questions.

At least the Washington Post hedged the headline a bit, "says he uncovered." Still misleading, but makes the factual basis a little more clear.

At least the Washington Post hedged the headline a bit, “says he uncovered.” Still misleading, but makes the factual basis a little more clear.

Some of the stuff strikes me as improbable or a little crack-pot-ish; some of it seems plausible and interesting. I’m a firm believer in the idea that sometimes non-academic historians stumble onto interesting things and interesting questions, and I don’t discriminate unless people show themselves to be going down truly untenable paths (like that small segment of the Internet who believes that all nuclear weapons are a hoax, which is just a truly silly “theory”).3 I will hear just about anyone out, and tell them what I find plausible or implausible about their ideas. I am a skeptical person — big claims need big evidence. But I do believe there is still a lot “out there” to be found on these topics, and maybe more than a few surprises yet.

The German nuclear program seems to attract a lot of “theorizing” in particular, ranging from the “they got further in it than most people think” (which is an easy argument to make since most people don’t know much about the German program at all) to the absurd extremes of “they made an atomic bomb and the only way the Americans got one themselves was by stealing it” (conspiracy country).

The 1945 version of the same headline — New York Herald Tribune, August 8, 1945, story about the Norsk Hydro plant, which also over-emphasized the closeness of Germany's getting the bomb for dramatic effect.

The 1945 version of the same headline — New York Herald Tribune, August 8, 1945, story about the Norsk Hydro plant, which also over-emphasized the closeness of Germany’s getting the bomb for dramatic effect. Click the image to read the article.

Public understanding of the German nuclear program is indeed a confused and often incorrect thing, owing to a history of the politicization of the topic. In the very early days after the dropping of the atomic bomb on Hiroshima, the “race with the Germans” narrative was played up very heavily by the Manhattan Project public relations people, both because it made for good drama and because it seemed to justify the US interest in the topic. And, indeed, the scientists who lobbied for the atomic bomb program between 1939 and 1944 or so did believe that the Germans might be ahead of them and that they were “racing” them to make the atomic bomb. It was not until late 1944 that the Alsos program reported back that the Germans had never gotten very far with their work, and that the US had never really been “racing” with them at all. Even today, though, we still see the legacy of this, with television programs and movies over-dramatizing the closeness of the “race,” and the importance of things like the sabotage of the Norsk Hydro facility, all of which makes it look like the Germans were very close indeed.

On the other side of the coin, we also have things like the Copenhagen play, which is an excellent piece of drama (and I am indeed a fan) but has infected a new generation with the idea that the Germans made no progress at all with regards to nuclear weapons — and indeed, had never even seriously considered the matter — because Heisenberg had consciously sabotaged the whole project. Never mind that Heisenberg’s own claims were far more nuanced on this point (he was always vague on this, only implying in a round-about way that they might not have made a bomb because they didn’t really want one). The play and the press around it has led a lot of people to think that the Germans knew really nothing about nuclear weapons development, and that they had intentionally avoided making them.4

Allied troops disassembling the German experimental research reactor at Haigerloch, as part of the Alsos mission.

Allied troops disassembling the German experimental research reactor at Haigerloch, as part of the Alsos mission.

The truth, so far as we know it now, is somewhere other than these two extremes. Mark Walker’s two books (German National Socialism and the Quest for Nuclear Power, 1939-1949 and Nazi Science: Myth, Truth, And The German Atomic Bomb) are still excellent, though a bit more has come out since then. The basic gist of Walker’s work is that the German program knew a lot on paper, but never quite crystallized everything organizationally or technically to keep their program from being anything more than a side-project, focused primarily on reactor development. They never developed large-scale isotopic enrichment facilities, and they never got a reactor that went critical. Their reactor work was sophisticated given the conditions under which it was being done, but it never achieved criticality. Some members of the various teams that worked on the project had some fairly accurate understandings of how a nuclear weapon might be made, but there was also a lot of confusion circulating around (some members of the team understood it would be a fast-neutron fission reaction in enriched material, some were confused and focused on it being basically an out-of-control pile). Some were considering rather advanced designs (Karlsch has convinced me that they thought a bit about implosion, for example), but the whole thing was mostly a exploratory program.

The plausibility of any new arguments about German successes with their nuclear programs is always limited in part by what we know about the technical requirements of such an endeavor. The Manhattan Project need not be the only model of a successful nuclear program (it was in many ways unusual), but it does provide some baseline metrics for talking about nuclear programs of the 1940s. Any successful plutonium-breeding program is going to require fairly large reactors, because plutonium reprocessing extracts only grams of “product” from each ton of uranium fuel that goes into it. (Each of the three early Hanford reactors extracted only 225 grams of plutonium from every ton of uranium processed.) Any successful isotopic-enrichment program is going to require huge feed supplies of uranium (the Manhattan Project approaches consumed thousands of tons of uranium), pretty large facilities, and a lot of electricity.

When Alsos leader Sam Goudsmit was investigating the Germany nuclear work, he was struck by how little of it was kept very secret — evidence, in his mind, that they had not gotten very far with it. (S.A. Goudsmit and F.A.C. Wardenburg, "TA-Straussburg Mission," (8 December 1944), copy in the Bush-Conant file, Roll 1, Target 6, Folder 5.)

When Alsos leader Sam Goudsmit was investigating the Germany nuclear work, he was struck by how little of it was kept very secret — evidence, in his mind, that they had not gotten very far with it. (S.A. Goudsmit and F.A.C. Wardenburg, “TA-Straussburg Mission,” (8 December 1944), copy in the Bush-Conant file, Roll 1, Target 6, Folder 5.)

Separate from the technical argument is a bureaucratic one — if the Germans supposedly made such progress, why is was there no organizational evidence of it in the copious reports, papers, formal and informal statements, and so on that were discovered by the Alsos project, later researchers, and at Farm Hall? Big programs leave big traces. If one wants to claim that the German program was big, one has to show where those traces are, or come up for a plausible argument for why there are no traces.

This does not mean that one might not find more evidence in the future. It just means that any claims and evidence need to fit within the existing technical and bureaucratic narratives. For example, one could argue, “oh, but they did have a massive isotopic enrichment plant, and it was here, and here is evidence of — if one had the evidence. On the bureaucratic side, one could argue that people who we previously thought were important in the program (e.g. Gerlach) were actually out of the loop entirely. Or something along those lines.

Weekly World News, 2002: "Confederacy was Building an Atomic bomb."

Weekly World News, 2002: “Confederacy was Building an Atomic bomb.” No comment!

But you can’t just find a hole in the ground and say, “ah, here is where Hitler was making a bomb.” Aside from the implausibility of a nuclear program existing in a single underground bunker, by itself this kind of claim hasn’t done the work to be plausible. At best, if done in good faith, it is a claim along the lines of “oh, maybe this is worth looking into more.” That is fine — hey, I’d even nominally support that — but one shouldn’t be going to the newspapers about it at that stage, and the newspapers shouldn’t be passing off your claim as having more validity than half of the other implausible claims that circulate around these topics. This is premature, and the net effect is going to be misleading for the readership.

As historians, we need to be open to the idea that there are still mysteries to be solved, secrets to be unearthed, even about ground that superficially looks well-trodden. But I wish journalists would do a little better than just re-printing the overblown claims of unreliable sources, without checking with experts on their plausibility. Couching it as, “this guy made a claim” doesn’t get you off the hook, because we all know that only the initial, big-claim story is the one that will be passed around, and that almost nobody will notice when no follow-ups occur, or the mild “so no evidence turned up for this guy’s big claim” story comes out.

Journalists — You can do better!

Notes
  1. I got to see a demonstration of the lanthanum bromide detectors that U.S. Customs and Border Protection uses at Port Newark a few weeks back — they were pretty neat. Totally hand-held, hold it up to something interesting and click a button and 30 seconds later it tells you what isotope it is, color-coded by whether it is natural in origin, a medical isotope, or something with nuclear weapons relevance. []
  2. Karlsch’s work deserves to be gone over more carefully. Its lack of translation into English has probably inhibited this to some degree. Karlsch has found some interesting documents, but I am not sure they add up to what he claims they do. For example, Karlsch and and Mark Walker published an article in 2005 where they claimed they had a diagram of a Nazi atomic bomb — it is clearly not one. For one thing, it has “plutonium” (the American term for Element 94) labeled on it, which clearly dates it as a postwar creation. And for another thing, it is probably a crib from Hans Thirring’s 1946 Die Geschichte der Atombombe, which itself is explicitly based on the Smyth Report. Karlsch’s work is filled with a muddled discussion of pure-fusion concepts (which wouldn’t work), dirty bombs, atomic bombs of various sorts, “mini-nukes,” and all sorts of other indications of a less-than-complete understanding. []
  3. For those who are curious: The “all nukes are a hoax” theory seems to stem from a couple different sources. The technical argument is that fast neutron chain reactions are impossible, because the fission cross-section of U-235 is small for fast neutrons. The cross-section is indeed small for high energy neutrons, which is why reactors use a moderator to slow the neutrons down and increase the likelihood of their capture by the small amounts of U-235 in the nuclear fuel. What is weird is that the people making this argument don’t seem to realize that this is exactly why you use 80-90% enriched material in a bomb — it is to overcome this low probability of fissioning by just putting a ridiculous number of targets in the area. It is also why there are tampers, neutron reflectors, and the like, and also why even a relatively sophisticated weapon like the Fat Man only fissioned something like 13-18% of its fissile material, and the Little Boy bomb only fissioned around 1% of its fissile material. They also have weirdly interpreted the “Hiroshima and Nagasaki are not that different from the firebombing of Tokyo” argument (to a rather absurd conclusion, that it was just a firebombing, despite the fact that firebombing and atomic bombing have really different outcomes), believe that the photographs of the mushroom clouds are all faked (despite the fact that such a level of fakery was really quite beyond the technology of the 1940s — similar to the “Apollo moon hoax,” it would have been easier to make an atomic bomb in the 1940s than to fake an atomic bomb convincingly on film), and believe that every scientist in the entire world (except for the random engineer who came up with this dumb theory) is in on the secret and has reasons to propagate it indefinitely (and I am apparently in on the hoax as well, to my surprise). The one person I e-mailed with about this, just trying to see what the limits of their rationality were and what it spawned from, eventually let on that to him, one of the most convincing pieces of evidence for this theory is the number of Jews who were involved in the creation of the bomb, wink wink, nudge nudge. This probably hits at the real origin of this bad idea — just another form of mis-matched anti-Semitism grafting itself onto another source. That my last name is a Jewish-sounding one did not apparently resonate with the person e-mailing me. []
  4. On the backs-and-forths of the Heisenberg story, see esp. Mark Walker, German National Socialism and the Quest for Nuclear Power, 1939-1949 (Cambridge: Cambridge University Press, 1989), 204-221, and the essays in Matthias Dörries, Michael Frayn’s “Copenhagen” in Debate: Historical Essays and Documents on the 1941 Meeting Between Niels Bohr and Werner Heisenberg (Berkeley, CA: Office for History of Science and Technology, UC Berkeley, 2005). []
Visions

The button that isn’t

Monday, December 15th, 2014

One of my favorite articles from The Onion concerns the imagined allure of “the button”:

"Obama Makes It Through Another Day Of Resisting Urge To Launch All U.S. Nuclear Weapons At Once" - The Onion

Despite being constantly tempted by the seductive power of having an apocalyptic arsenal at his fingertips, President Barack Obama somehow made it through another day Tuesday without unlocking the box on his desk that houses “the button” and launching all 5,113 U.S. nuclear warheads. …

Though the president confirmed his schedule was packed with security briefings, public appearances, and cabinet meetings, he said he couldn’t help but steal a few glances at the bright red button, which is “right there, staring at [him], all the time.”

The article manages to wring a lot of humor out of the idea that on the President’s desk is a big red button that starts World War III.

Like much of The Onion’s satire, it is exceedingly clever in taking a common trope and pushing it into absurd territory. Even the physicality of the idea of a “button” is toyed with:

“Did you know that if you sort of put enough weight on the button with your fingertip, you can feel a little slack there before it actually clicks?” Obama added. “Thank you, and God bless America.”

I was thinking about this article a few months ago because I was asked by my friend from grad school, Latif Nasser, if I would be interested in talking to him and NPR’s Robert Krulwich about “the button” for a Radiolab episode they were working on. The Radiolab show was initially meant to be about buttons — in all senses of the term — but they kept finding that things that they thought were buttons were in fact either non-buttons or non-functional buttons. You can listen to the full episode here: “Buttons Not Buttons.”

You should listen to the whole episode, but — spoiler alert — the interesting thing about the nuclear “button” is that there isn’t a nuclear button. That is, nuclear war can’t be started by just pounding a big red button. Sorry. Waging a nuclear war requires a lot more activity, spread out across a vast geographical area, and is a complex interaction of technical, organizational, and political issues. In the Radiolab interview, I attempted to paint in broad strokes the kind of vast technical and organizational networks that are needed to maintain the United States’ command and control systems — the systems that let you use nukes when you want to, and make sure that nukes don’t get used when they are not supposed to be used.

The problem with a big red button is that someone might actually press it. Like a cat. Source: Ren and Stimpy, Space Madness.

The problem with a big red button is that someone might actually press it. Like a cat. Source: Ren and Stimpy, Space Madness.

The Onion article indicates, in its wry way, one of the key reasons there isn’t a single “button” — it would be way, way too dangerous. Nobody wants nuclear war to be that easy to start. Or, as I like to put it, you don’t want a nuclear weapon that can be set off by a cat. Because you know that, sooner or later, a cat would set it off. Such is the way of cats. There are places in the world where big red buttons exist. But they are usually used to stop activity, not start it. They are emergency shutoff switches, things that you need to push in a big hurry, without too much hassle. And even they might require you to break some glass first.

On the other hand, if you’re a believer in deterrence and all that, you don’t want it to be too hard to start nuclear war. So this is just another variation of the “always/never” problem: you want to be able to start nuclear war if you need to, and start it quickly and effectively, but on the other hand, you want to never start nuclear war accidentally.

"Nuclear C3 [Command, Control, Communication] Transport Systems" — an attempt to characterize the technical, organizational, and political systems needed to actually start nuclear war in the United States today. Source: The Nuclear Matters Handbook, by the Office of the Assistant  Secretary of Defense for Nuclear, Chemical, and Biological Defense Programs.

“Nuclear C3 [Command, Control, Communication] Transport Systems” — an attempt to characterize the technical, organizational, and political systems needed to actually start nuclear war in the United States today. Source: The Nuclear Matters Handbook, by the Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense Programs.

From a technical standpoint, this means that you have to engineer a pretty complex system. In principle, the United States President has complete control over whether nuclear war starts. But the President doesn’t work in a missile silo. So somewhere between the President and the silo has to be a delegation of authority, and a subsequent potential loss of control. One could, in theory, completely automate that control — you could install a single “button” — but aside from the technical difficulty of that, there are a lot of new potential errors that get introduced.

Eric Schlosser’s Command and Control is a great read if you are interested in how this problem gets addressed over the course of the Cold War. Michael Gordin’s Five Days in August is, in part, a great description of how these issues were wrangled with even in the earliest days of nuclear weapons as political control transferred from Potsdam to Washington and Tinian. If I could add footnotes to radio interviews, I would prominently name-check both of these books — they greatly improved my own understanding of this. As did the work of my friend Dan Volmar, who is writing a dissertation on US command and control systems. And I need to give a massive hat-tip to Stephen Schwartz, who clued me into the Roger Fisher “cut the heart out” that I wrote about a few years back.

A submarine-launched ballistic missile trigger. Courtesy of Stephen Schwartz.

A submarine-launched ballistic missile trigger. Photo by the always amazing Paul Shambroom; courtesy of Stephen Schwartz.

Of course, there sometimes are switches, keys, and — yes — buttons, as part of the overall launching systems. But they aren’t centralized, and they are always more complicated than a simple big, red button. US ICBM launches require two simultaneous keys to be turned by two different people, on different sides of the room, the idea being that the odds of two people deciding to collude on an illegal launch are lower than one. SLBM launches, Stephen Schwartz reports, require the use of a pistol-grip “trigger” that is kept in a safe— a button, of sorts, though one that is hard to accidentally set off.

OK, so there isn’t a single nuclear button. Why do we talk about a button? This is a great history of technology question — “the button” is a metaphor, and not a new one. Starting in the 19th century, “the button” (or the “push button” or other variations on the same thing) started becoming a standard English idiom for “quick and easy and automatic.” The idea that you “push a button” and something happens — as easy as that! — shows up in the late Machine Age and continues onward.

So “the button” is just a metaphor for how technology makes things easy. That’s why everything in The Jetsons is button-based — the future was meant to take this to the extreme, where George Jetson would just spend all day at work pressing a single button. (Of course, many of us do press buttons all day — I am pressing quite a few as I type this — but generally not just one button.) If you combine the button imagery with the atomic bomb, it becomes a comment on the way technology has made mass destruction easy.

"Now I am become Edison, Wrecker of Worlds": fictional account of Edison destroying England using "button no. 4," 1896. Source: The Electrical Trade, August 1, 1896.

“Now I am become Edison, Wrecker of Worlds”: fictional account of Edison destroying Great Britain using “button no. 4,” 1896. Source: The Electrical Trade, August 1, 1896, page 9.

In fact, the idea that technology had made it so easy to destroy the world that a single button could set it all off predates nuclear fission. In the 1890s, a Parisian newspaper published a skit about Thomas Edison destroying all of England by joining some wires and pushing “button No. 4.” For this anecdote, and several others relating to “pushbutton” world destruction prior to fission, I am grateful to Spencer Weart’s Nuclear Fear: A History of Images.1

There are other “button” stories I found while searching from newspaper and journal databases. In 1929, the famous American physicist Robert Millikan was quoted as saying that “no ‘scientific bad boy’ ever would be able to blow up the world by releasing atomic energy,” (!), and he later “scoffed at the idea that in the future by pressing a button a man might have an army of atomic servants wash his face, mend his clothing or make his bed.” In a 1932 review of the 1928 proto-atomic-bomb drama “Wings Over Europe,” it is noted that “All the scenes are set in Downing-street and the chief character is a young scientist who has presented to the cabinet a secret that could destroy the world by pressing a button.” In article from the Weekly Irish Times in 1932, it is feared that atomic energy will enable “a time when, by the pressing of a button or turning of a switch, it will be possible for somebody to explode the whole world like a penny balloon. It will be a tremendously lethal opportunity.” On these proto-atomic bomb fantasies, especially in the U.K. context, I found Graham Farmelo’s Churchill’s Bomb very useful. Churchill himself was an atomic-bomb speculator in the H.G. Wells vein, writing about atomic energy as early as 1931.

August 20, 1945: a LIFE magazine correspondent reports on "push-button" battles of the future.

August 20, 1945: a LIFE magazine correspondent reports on “push-button” battles of the future.

So when the actual atomic bomb came along, there was already a ready-made imagery to be applied to it. (And Weart’s book is excellent at demonstrating this well beyond the realm of buttons, too.) So when did people first start applying the button metaphor to the bomb? As early as late August 1945, there are discussions of “push-button” battles. By November 1945, when the physicist Edward Condon argued during Congressional testimony that “The next war should be described as the War of the Pushbuttons,” it was already something of a cliché. The idea of World War III being a “pushbutton war” started pretty early.

I have to admit, I was a little uncertain how the “button” line of discussion was going to come together when I was first contacted by Latif, but the more I thought about it, the more I thought it was a nice way to get into a lot of different, interesting issues both about the history of the bomb (and what “the button” means, metaphorically), but also in explaining why there isn’t a button, it allows for a nice, tangible, interesting way to bring up the questions involved in command and control systems — moving the discussion of the bomb out of the realm of pure imagery and into the tangible and real.

Notes
  1. The specific Edison piece, with “button No. 4,” comes from a source Weart cites: Wyn Wachhorst, Thomas Alva Edison: An American Myth (MIT Press, 1981), 103. A copy of the actual story is reproduced above, via Google Books (and thanks to Latif for finding that copy of it). []
Visions

Visualizing fissile materials

Friday, November 14th, 2014

I’ve had some very favorable interactions with the people at the Program on Science and Global Security at Princeton University over the years, so I’m happy to announce that four of the faculty have collaborated on a book about the control of fissile material stockpiles. Unmaking the Bomb: A Fissile Material Approach to Nuclear Disarmament and Non-Proliferation, by Harold Feiveson, Alex Glaser, Zia Mian, and Frank von Hippel, was recently published by MIT Press. Glaser, who does some pretty far-out work at the Nuclear Futures Lab (among other things, he has been working on really unusual ways to verify weapons disarmament without giving away information about the bombs themselves — a really tricky intersection of policy, technical work, and secrecy), asked me if I would help them design the cover, knowing that I like to both dabble in graphic arts as well as bomb-related things. Here is what we came up with, in both its rendered and final form:

Unmaking the Bomb cover and render

The “exploded” bomb here is obvious a riff on the Fat Man bomb, simplified for aesthetic/functional purposes, and was created by me using the 3-D design program Blender. (The rest of the cover, i.e. the typography, was designed by the art people at MIT Press.) The idea behind the image was to highlight the fact that the fissile material, the nuclear core of the bomb, made up a very small piece of the overall contraption, but that its importance was absolutely paramount. This is why the non-nuclear parts of the bomb are rendered as a sort of grayish/white “putty,” and the core itself as a metallic black, levitating above.

The original idea, proposed by Glaser, was to do sort of a modern version of a drawing that appears in Chuck Hansen’s U.S. Nuclear Weapons: The Secret History (Aerofax: 1988). Hansen’s image is a thing of beauty and wonder:

1988 - Chuck Hansen - Fat Man

I first saw this diagram when I was an undergraduate at UC Berkeley, working on a project relating to nuclear weapons — one of my first exposures to this kind of stuff. I had checked out pretty much every book on the subject that was in the Berkeley library system, which meant I found lots of unexpected, un-searched-for things serendipitously amongst the stacks. (This is something that I think has been lost, or at least not replicated, with increased reliance on digital sources.) I saw this diagram and thought, “Wow! That’s a lot of information about an atomic bomb! I wonder how he got all of that, and how much of it is real and how much is made up?” I don’t want to say this diagram is what made me want to study nuclear secrecy — origins and interests are always more complicated than that, and a close friend of mine recently reminded me that even in elementary school I used to talk about how nuclear bombs were made, armed with the beautiful-but-highly-inaccurate drawings from Macaulay’s The Way Things Work), but it did play a role.

Eventually I did track down a lot of information about this particular diagram. I found Hansen’s own original sketch of it (in his papers at the National Security Archive) that he gave to the artist/draftsman who drew the piece, Mike Wagnon:

Chuck Hansen Fat Man sketch

I also tracked down Wagnon, some years back now. He told me how he drew it. The original drawing was made many times larger than it was going to be in the book — it was four feet long! After being finished, it was reduced down to the size on the page in the book, so that it just looked like it was packed with fine detail. He also confirmed for me what I had come to suspect, that the diagrams in Hansen’s book, as Wagnon put it to me in 2004, “advertise an accuracy they do not have.” A lot of it was just deduced and guessed, but when you draw it like an engineering diagram, people assuming you know what you’re doing.1

Looking at it now, I can see also sorts of really serious errors that show the limits of Hansen’s knowledge about Fat Man in 1988. An obvious one is that it is missing the aluminum pusher which sits in between the tamper and the high explosives. There are other issues relating to the most sensitive parts of the core, things that John Coster-Mullen has spent several decades now working out the details of. Hansen, in his later Swords of Armageddon, corrected many of these errors, but he never made a diagram that good again. As an aside, Wagnon’s version of Little Boy — which we also now know, because of Coster-Mullen, has many things wrong — was the source of the “blueprint” for the bomb in the 1989 film Fat Man and Little Boy:

At top, Wagnon's diagram of Little Boy from Hansen's 1988 U.S. Nuclear Weapons. At bottom, a screenshot from the 1989 film, Fat Man and Little Boy, shows Oppenheimer pondering essentially the same image.

At top, Wagnon’s diagram of Little Boy from Hansen’s 1988 U.S. Nuclear Weapons. At bottom, a screenshot from the 1989 film Fat Man and Little Boy shows Oppenheimer pondering essentially the same image.

Anyway, I am getting off the thread a bit. Unmaking the Bomb, aside from having an awesome cover, is about fissile materials: enriched uranium and separated plutonium, both of which can be readily used in the production of nuclear weapons. The authors outline a series of steps that could be taken to reduce the amount of fissile materials in the world, which they see as a bad thing both for non-proliferation (since a country with stockpiles of fissile materials can basically become a nuclear power in a matter of weeks), disarmament (since having lots of fissile materials means nuclear states could scale up their nuclear programs very quickly if they chose to), and anti-terrorism (the more fissile materials abound, the more opportunities for theft or diversion by terrorist groups).

The Princeton crew is also quite active in administering the International Panel on Fissile Materials, which produces regular reports on the quantities of fissile materials in the world. Numbers are, as always, hard for me to visualize, so I have been experimenting with ways of visualizing them effectively. This is a visualization I cooked up this week, and I think it is mostly effective at conveying the basic issues regarding fissile materials, which is that the stockpiles of them are extremely large with respect to the amounts necessary to make weapons:

world fissile material stockpiles

Click the image to enlarge it. The small blue-ish blocks represent the approximate volume of 50 kg of highly-enriched uranium (which is on order for what you’d need for a simple gun-type bomb, like Little Boy), and the small silver-ish blocks are the same for 5 kg of separated plutonium (on order for use in a first-generation implosion weapon). One can play with the numbers there a bit but the rough quantities work out the same. Each of the “big” stacks contain 1,000 smaller blocks. All references to “tons” are metric tons (1,000 kg). The “person” shown is “Susan” from Google SketchUp. The overall scene, however, is rendered in Blender, using volumes computed by WolframAlpha.

I made this visualization after a few in which I rendered the stockpiles as single cubes. The cubes were quite large but didn’t quite convey the sense of scale — it was too hard for my brain, anyway, to make sense of how little material you needed for a bomb and put that into conversation with the size of the cube. Rendering it in terms of bomb-sized materials does the trick a bit better, I think, and helps emphasize the overall political argument that the Unmaking the Bomb authors are trying to get across: you can make a lot of bombs with the materials that the world possesses. If you want the run-down on which countries have these materials (spoiler: it’s not just the ones with nuclear weapons), check out the IPFM’s most recent report, with graphs on pages 11 and 18.

To return to the original thread: the bomb model I used for the cover of Unmaking the Bomb is one I’ve been playing with for a while now. As one might imagine, when I was learning to use Blender, the first thing I thought to try and model was Fat Man and Little Boy, because they are subjects dear to my heart and they present interesting geometric challenges. They are not so free-form and difficult as rendering something organic (like a human being, which is hard), but they are also not simply combinations of Archimedean solids. One of my goals for this academic year is to develop a scaled, 3D-printed model of the Fat Man bomb, with all of the little internal pieces you’d expect, based on the work of John Coster-Mullen. I’ve never done 3D-printing before, but some of my new colleagues in the Visual Arts and Technology program here at the Stevens Institute of Technology are experienced in the genre, and have agreed to help me learn it. (To learn a new technology, one always needs a project, I find. And I find my projects always involve nuclear weapons.)

For a little preview of what the 3D model might end up looking like, I expanded upon the model I developed for the Unmaking the Bomb cover when I helped put together the Unmaking the Bomb website. Specifically, I put together a little Javascript application that I am calling The Visual Atomic Bomb, which lives on the Unmaking the Bomb website:

The Visual Atomic Bomb screenshot

I can’t guarantee it will work with old browsers (it requires a lot of Javascript and transparent PNGs), but please, give it a shot! By hovering your mouse over the various layer names, it will highlight them, and you can click the various buttons (“hide,” “show,” “open,” “close,” “collapse,” “expand,” and so on) to toggle how the various pieces are displayed. It is not truly 3D, as you will quickly see — it uses pre-rendered layers, because 3D is still a tricky thing to pull off in web browsers — but it is maybe the next best thing. It has more detail than the one on the cover of the book, but you can filter a lot of it on and off. Again, the point is to emphasize the centrality of the fissile material, but to also show all of the apparatus that is needed to make the thing actually explode.

I like to think that Chuck Hansen, were he alive today, would appreciate my attempt to take his original diagrammatic representation into a new era. And I like to think that this kind of visualization can help people, especially non-scientists (among which I count myself), wrap their heads around the tricky technical aspects of a controversial and problematic technology.

Notes
  1. I wrote a very, very, very long paper* in graduate school about the relationship between visual tropes and claims to power through secrecy with relation to the drawing of nuclear weapons. I have never quite edited it into a publishable shape and I fear that it would be very hard to do anything with given the fact that you really need to reproduce the diagrams to see the argument, and navigating through the copyright permissions would probably take a year in and of itself (academic presses are really averse to the idea of relying on “fair use“), and funds that nobody has offered up! But maybe someday I will find some way to use it other than as a source for anecdotes for the blog. *OK, I’ll own up to it: it was 93 pages long (but only 62 pages of text!) when I turned it in to the professor. I was told I should either turn it into a long article or a short book. []
Meditations

Tokyo vs. Hiroshima

Monday, September 22nd, 2014

How many people would have died if an atomic bomb had been dropped on Tokyo in early 1945, instead of firebombs? Before you accuse me of excessive obsession with morbidity (as one anonymous e-mailer recently did), let me explain to you how I came to ask myself this question, and what the consequences of the answer are.

Before the dropping of the atomic bomb on Hiroshima and Nagasaki, there was the burning of Tokyo. Operation Meetinghouse, the early March 1945 raid on Tokyo that involved over 330 B-29s dropping incendiary bombs from low-altitude at night, killed roughly 100,000 people, and may have injured and made homeless an order of magnitude more. As with all statistics on the damage caused by strategic bombing during World War II, there are debatable points and methodologies, but most people accept that the bombing of Tokyo probably had at least as many deaths as the Hiroshima bombing raid, and probably more. It is sometimes listed as the most single deadly air raid of all time as a consequence.

The ruins of 1945: Tokyo, left, and Hiroshima, right.

The ruins of 1945: Tokyo, left, and Hiroshima, right.

So it is understandable that many people, including myself, point to Tokyo whenever people want to talk about Hiroshima and Nagasaki. You can’t see the atomic bombings in isolation. The practice of targeting civilian areas with massively destructive aerial bombing had already been done before. And to some, the atomic bombs were just a refinement of the art of area bombing — a more efficient means to accomplish the same ends.1

However, there are a few points that I fear get missed in that kind of equivalence. I certainly agree that the philosophy of bombing used at Hiroshima and Nagasaki wasn’t a new one. Indeed, the experience of firebombing gave a lot of guidance to the question of nuclear targeting. The goals were similar, though the people planning the atomic bombs emphasized the raw terror that they hoped such a spectacle would inspire.

But I depart from the standard comparison in two places. The first is the idea that since the atomic bombings were not original in targeting civilians, then they do not present a moral or ethical question. As I’ve written about before, I think the question of morality gets more problematic. If the atomic bombings were one-off events, rare interventions to end the war, then it might (for some) be compelling to say that they were worth the price of crossing over some kind of line regarding the deliberate burning of civilians to death en masse. But if they were instead the continuation of a well-established policy of burning civilians to death en masse, then the moral question gets much broader. The question changes from, Was it morally justified to commit a civilian massacre two times?, to Was it morally justified to make civilian massacre a standard means of fighting the war? 

I want to state explicitly that I don’t think, and I don’t want my phrasing to imply, that the answer to the above is necessarily an unequivocal “no.” There are certainly many moral frameworks that can allow for massacres (e.g. ends-justify-the-means). But I prefer to not dress this sort of thing up in euphemisms, whether we think it justified or not.  Massacre means to deliberately and indiscriminately kill people. That is what you get when you bomb densely-populated cities with weapons that cannot distinguish between civilians and members of the military. Incendiary raids and atomic bombs certainly fall in this category, whether one thinks that the circumstances required them or not.

Japanese cities destroyed by strategic bombing in World War II. More information about this map here.

Japanese cities destroyed by strategic bombing in World War II. More information about this map here.

The second place I depart is a technical one. There are several important differences between the effects of firebombing and atomic bombing. They are not, even in the case of the bombing of Japan, strictly equivalent from the point of view of their effects or their outcomes.

The Tokyo firebombing raid was a relatively slow (compared to an atomic bomb), massively-distributed attack. The Tokyo raid involved hundreds of B-29 bombers arriving and attacking over the course of several hours. Such massive groups of B-29s could be heard and tracked from a considerable distance. They spread their bombs over a large area of the city, with the goal of creating a mass conflagration that would be impossible to control. They could be fought against with interceptors and anti-aircraft guns; air-raid alarms could be sounded; civilians could flee to shelter, or outside of the city itself.  This is not to imply that any of these strategies were necessarily effective, and it does not necessarily make firebombing raids any more “humane.” But it does change the outcome quite a bit, when compared to an atomic bomb attack.

The atomic bombing raids of Hiroshima and Nagasaki were fast, near-instantaneous attacks. They involved a single B-29 weather plane in advance, and then two or three B-29s approaching the city, one with the bomb itself. This means that effective air-raid warning was minimal, because it was not possible to distinguish an atomic bomb attack from a reconnaissance or weather flight, all of which were common by that late stage in the war. (And obviously any hope of detecting an atomic bomb attack was impossible prior to Hiroshima.)

Drawing by Goro Kiyoyoshi of his memories of the Hiroshima attack. "I got on a streetcar of the Kabe line about 8:10 AM. The door was open and I was standing there. As I heard the starting bell ring, I saw a silver flash and heard an explosion over the platform on which l had just walked. Next moment everything went dark. Instinctively I jumped down to the track and braced myself against it. Putting a handkerchief to my mouth, I covered my eyes and ears with my hands."

Drawing by Goro Kiyoyoshi of his memories of the Hiroshima attack. “I got on a streetcar of the Kabe line about 8:10 AM. The door was open and I was standing there. As I heard the starting bell ring, I saw a silver flash and heard an explosion over the platform on which l had just walked. Next moment everything went dark. Instinctively I jumped down to the track and braced myself against it. Putting a handkerchief to my mouth, I covered my eyes and ears with my hands.” From Unforgettable Fire: Drawings by Atomic Bomb Survivors (1977).

The primary acute effects of the atomic bombs were blast and thermal radiation. The former travels at the speed of sound, the latter significantly faster. (The rays are transmitted at more or less the speed of light, but the intensity and duration of the thermal pulse is a more complex phenomena and unfolds over the course of several seconds.) The blast knocks down buildings. The thermal radiation heats and burns. Both contribute to the starting of fires — the thermal radiation directly (for certain materials), the blast wave indirectly by knocking over flammable materials, stoves, candles, etc. After Hiroshima there was a significant firestorm, as with incendiary bombing, but there was not after Nagasaki. There was no effective preparation for such an attack — perhaps if they had the foresight of some later Civil Defense techniques, some lives could have been saved (different shelter types did affect the fatality rates significantly, even close in to the zero point), but obviously this was not quite in the cards during the war itself, when the atomic bomb was such a novelty. There was no time for shelters, no time to flee the city, no time even for real comprehension of what was happening — a bright light followed by a crushing blast, followed by fire. For those who survived the blast and fire, there were radiation effects, if they were with a few kilometers of the epicenter. This could range from acute radiation sickness and death with several weeks, to an increased cancer risk over the course of their lives.

Are the atomic bomb effects significantly different from firebombing to warrant putting them into different ethical or moral categories? One could argue the point either way. I tend to think that they are both pretty terrible forms of suffering, but they are not identical. In many ways the atomic bombing effects were significantly worse for the people living in the target cities — all of the suffering of firebombing accelerated, with a few new terrors added into the mix, and with less warning.

Table from a 1963 Office of Civil Defense report, "Survey of the Thermal Threat of Nuclear Weapons," by Jack C. Rogers and T. Miller. These numbers are not necessarily authoritative, but they give some indication of the relative mortality rates differences I am talking about.

Table from a 1963 Office of Civil Defense report, “Survey of the Thermal Threat of Nuclear Weapons,” by Jack C. Rogers and T. Miller. These numbers are not necessarily authoritative, but lay out the situation well: atomic bombs have much higher mortality and casualty rates per square mile than firebombing, but destroy proportionally smaller amounts of area.

But the equivalence argument also misses some important differences in how deadly the atomic bombs were. The firebombing of Tokyo did, indeed, kill the most people of any air raid in history — from 80,000 to over 100,000 dead in a single raid. But the city of Tokyo had some 5 million people living in it. In the areas targeted, there were 1.5 million people living. So that means that it killed no more than 2% of the total population of the city, and no more than 7% of the people who lived in the targeted areas. The bombing of Hiroshima killed between 90,000 and 160,000 people in a city of 345,000 or so. So that is a fatality rate of 26-46%, depending on whose fatality estimates you go with. The bombing of Nagasaki killed between 39,000 to 80,000 people in a city of 260,000 people or so. So that is a fatality rate of 15-30%.

So to put it another way, the Hiroshima bombing was around 5 times more deadly than the Tokyo raid per capita, and the Nagasaki bombing was maybe 4 times more deadly. The total number dead is similar in all three cases, but the total number of people possible to kill in Tokyo was much higher than the number of people in Hiroshima and Nagasaki.

This isn’t the whole story, though. There is a subtle technical difference mixed in here. Firebombing on par with the Tokyo raid spread a moderate chance of death over a large area. The atomic bombs dropped in World War II spread a very high chance of death over a relatively small area. So depending on the target in question, the difference in fatalities might or might not matter. The Hiroshima bomb was perfectly capable of killing something like half of the city — but it was a pretty small city, compared to Tokyo. Tokyo has areas of incredibly high density, but also large areas of relatively moderate to low density.

So why does this matter? From an ethical standpoint, I’m not sure it does. The targeting of civilians for mass destruction seems to be the core ethical issue, whether you do this by means of fire, neutrons, or toxic gas. But I do think we end up underestimating the effects of the atomic bombs if we see them as exactly equivalent to firebombs. There is an error in seeing the atomic bombs as just an expeditious form of firebombing — it both overstates the deadliness of firebombing while understating the deadliness of atomic bombs.

This map gives a rough indication of the methodology used to construct the casualty estimates for a Little Boy bomb targeted on World War II Tokyo. Percentages are expected average fatality rates. The actual method used (see below) used many more gradations of difference. One can see, though, the way in which the most intense of the effects of the atomic bomb are highly localized relative to the total size of Tokyo.

This map gives a rough indication of the methodology used to construct the casualty estimates for a Little Boy bomb targeted on World War II Tokyo. Percentages are expected average fatality rates. The actual method used (see below) used many more gradations of difference. One can see, though, the way in which the most intense of the effects of the atomic bomb are highly localized relative to the total size of Tokyo. The underlying population density map of Tokyo comes from the very useful Japanairraids.org.

All of this is what led me to the question I opened with: What if, in some hypothetical alternative universe, instead of launching a firebombing raid in early March 1945, the US was able to drop the Little Boy atomic bomb onto Tokyo? What would the casualties have been for that raid?

Obviously an exact answer is not possible. But we do have population density maps of Tokyo, and we do have records on the relationship between distance from “ground zero” and percentage of population killed. There are lots of uncertainties, here, regarding the types of buildings, the differences in geography, and other things that are hard to estimate. But let’s do a rough estimation.

If we transpose the effects of Hiroshima — a 15 kiloton bomb detonated around 1,968 feet above the ground — to the population densities of Tokyo, what is the result? I don’t want to clog up the blog post with a detailed explanation of the methodology I’ve used, so I’m putting it at the end with the footnotes. The basic gist of it was this: I took a population density map of Tokyo from 1940, divided the different density areas into different layers in Photoshop, then selected radii based on bomb effects and did pixel counting. I used all of this to come up with rough minimum-maximum estimates of how many people lived in areas at different regions from the bomb blast, and then multiplied those population counts against known average fatality/casualty rate data taken from Hiroshima.

I looked at two ground zeros, to further emphasize the intense locality of a Hiroshima-sized atomic bomb attack (compared to a firebombing raid). If targeted on the moderately-dense Honjo area (which is more or less the center of the firebombing attack), one could roughly expect there to be between 213,000 and 344,000 fatalities, and between 442,000 and 686,000 injuries. This is the ground zero shown in the above image. If you move it north-west by only 1 km, though, to the more densely populated Asakusa area, the numbers change to 267,000 to 381,000 dead and 459,000 to 753,000 injured.

So if the Hiroshima bomb had been dropped on Tokyo, it probably would have destroyed less area than the March 1945 Tokyo firebombings — something like 5 square miles, compared to the 15 square miles destroyed by firebombing. However it would have killed between two and four times as many people who died in the firebombings, and injured possibly fewer or the same amount of people.

These numbers seem roughly plausible to me, even given all of the uncertainties involved, and they align with the rough guess one would make from the relative area destruction and casualty rates cited earlier. It is of note that the shifting of an atomic bomb’s aiming point can increase total casualties by several tens of thousands of people in a city the density of Tokyo; firebombing is probably not quite as dependent on any given aiming point, given how much lower the accuracy was.

Finally, it is worth noting that the Tokyo firebombing was much more fatal than most of the other firebombing raids. As the first low-altitude, massed night B-29 incendiary raid, against Japan’s highest-density city, it was especially fatal. Later raids killed, on average, orders of magnitudes less, both for the reasons given at the beginning (e.g. fleeing when you hear hundreds of B-29s in the distance), and because of much lower population densities. Had Hiroshima been firebombed, the fatalities would have certainly been much lower than the atomic bombings, because the Tokyo case is in fact an anomalously high one.

Atomic bombings may be ethically no better or worse than firebombing raids like Tokyo, but to regard them as simply an expedient form of firebombing misses a key point about their relative deadliness: If you have to pick, and you get to pick, one should choose to be firebombed, not atomic bombed — unless you know exactly where the bombs are going to go off.

Click for the full casualty calculation methodology.

Notes
  1. On this, see esp. Michael Gordin’s Five Days in August, and, perhaps,  my review of it. []
Meditations

The luck of Kokura

Friday, August 22nd, 2014

On the morning of August 9th, 1945, a B-29 bomber left the island of Tinian intending to drop an atomic bomb on the city of Kokura, the location of one of the largest arsenals still standing in Japan. On arriving at the target, the plane found it obscured by clouds. It turned south and went to its secondary target: Nagasaki. 

Supposedly, some in Japan still refer to the “luck of Kokura” in reference to this time in which some bad weather saved the lives of tens of thousands of people there. But what really happened that morning? Was it bad weather, or something else, that obscured, and thus saved, Kokura? 

Surprisingly, there are actually a few different theories floating around, and the uncertainty over the matter is generally not realized or acknowledged.

Model of the Kokura arsenal made for targeting purposes, ca. 1945. North is in the lower-right hand corner. Source: USAAF photos, via Fold3.com.

Model of the Kokura arsenal made for targeting purposes, ca. 1945. North is in the lower-right hand corner. Source: USAAF photos, via Fold3.com.

But first, let’s review the basics of the mission. The Kokura/Nagasaki mission (dubbed CENTERBOARD II), as with the Hiroshima mission before it (CENTERBOARD I), did not involve the bomber flying on its lonesome to the target, as is sometimes imagined. There were a total of six planes involved in the mission, all B-29 bombers. One of them was the strike plane that carried the Fat Man implosion bomb (Bockscar).1  Two other planes (The Great Artiste and Big Stink) were instrument and observation planes. One other plane was a “standby” plane (Full House) that was to serve as backup if the three bombing planes ran into air resistance — because they didn’t, it instead flew back to Iwo Jima instead of on to the target after a rendezvous with the bombing plane. Lastly, there were two weather planes that flew out in advance, one to Nagasaki (the Laggin’ Dragon), the other to Kokura (the Enola Gay, the same plane that had dropped the atomic bomb on Hiroshima a few days earlier, but with a different crew). The weather planes would check out bombing conditions and then circle back, helping the bomber plane determine whether the primary or secondary target would be used. Niigata, a third atomic bombing target, was not considered on this mission because of its great geographical distance from Kokura and Nagasaki.

Bockscar was being piloted by Major Charles Sweeney. It had taken off from the island of Tinian at 3:47am, Tinian time. They had arrived at a rendezvous point at Yakushima Island around 9:15am. It rendezvoused with one of the other B-29s (the instrument plane), but did not spot the other one (the photo plane). At 9:50am, the pilot of Bockscar, Charles Sweeney, gave up and continued on to Kokura, having waited some 30 minutes longer than he was supposed to. At 10:44am, they arrived at Kokura. The flight log records that “Target was obscured by heavy ground haze and smoke.” A crew member of Bockscar rated it as “7/10 clouds coverage – Bomb must be dropped visually but I don’t think our chances are very good.”2

Three bombing runs on Kokura were attempted, but “at no time was the aiming point seen,” as the flight log recorded. Visual bombing had been made a mandatory requirement (they did not trust the accuracy of radar-assisted bombing), so this made Kokura a failed mission. Since Bockscar had limited fuel, Sweeney decided to continue on to the secondary target, Nagasaki. They arrived at Nagasaki at 11:50am, which they also found obscured by smoke and clouds, to the degree that they made the target approach entirely by radar. Right at the last possible moment, the clouds parted just enough for the bombardier to site the target and drop the bomb. (It missed the intended target by a significant margin.) Bockscar circled the target once and then, at 12:05pm, took off for Okinawa, and from there, after refueling, Tinian.

Care about the details of the Hiroshima and Nagasaki bombings? Get this book.

Care about the details of the Hiroshima and Nagasaki bombings? Get John’s book. I’m not just saying that because he says nice things about my blog, either.

An aside: For anyone interested in the nitty-gritty details of the Hiroshima and Nagasaki missions, my go-to reference these days is John Coster-Mullen’s Atom Bombs: The Top Secret Insider Story of Little Boy and Fat Man. I first got a copy of John’s book in 2006 or so. John sent me a new copy a few months ago, and I have been impressed with how much new material he has added over the last 8 years. (And I have managed to find a few useful things for him over the years, which have made it into his book as well — duly credited!) If you’re interested in the history of the Manhattan Project, you can’t not have a copy of John’s book… and if your copy is over 5 years old, considered getting an updated edition! All of these little details about times and planes and whatnot come from John’s book.

So what caused the “heavy ground haze and smoke”?

Theory #1: Bad weather

The most common explanation for the obscuring of Kokura is one of weather. It seems to me to be a valid possibility, but let’s pick it apart a bit.

As noted, the Enola Gay had flown ahead to Kokura to scope out the visual conditions. They had radioed back that the visibility was “3/10 low clouds, no intermediate or high clouds, and forecast of improving conditions.”3 That was a favorable-enough weather report that Kokura, the primary target, was chosen as the first run. Upon arriving, however, Bockscar found the weather conditions were now 7/10 — too obscured to bomb. Is this plausible?

Summer weather patterns in Japan, map made in early 1945. Not great for bombing. Source: Produced for the USAAF's IMPACT magazine, high-res version via Fold3.com.

Summer weather patterns in Japan, map made in early 1945. Not great for bombing. Source: Produced for the USAAF’s IMPACT magazine, high-res version via Fold3.com. There is another wonderful map for winter weather as well.

General Groves, in his 1964 memoir, suggests that it might have been the case that the change in weather conditions was simply a matter of how much time had passed between the forecast and arrival of Bockscar. The strike plane was, as noted, delayed by around half an hour. Groves also implies that there may have been a difference between how visual the target was at an angle — how a bombardier sees it — and how it looks from straight above — how a weather plane sees it). He concludes that the reasons for the haze were “never determined.”4

On the face of it, it’s hard to know whether such a rapid change in visibility is possible through entirely natural causes. In some parts of the world, the weather can be very volatile. Japan is one of these parts of the world, especially around the late fall. The variability of Japanese weather conditions was something that the US Army Air Forces knew very well, and was one of the bane of their bombing plans. It was a major issue in the atomic bombing discussions as well since very early on. At the first Target Committee meeting in April 1945, weather was a major point of discussion:

…it was pointed out that the months in which the initial mission will be run constitute the worst weather months of Japan. […] Dennison pointed out that all weather maps indicated that there were only an average of 6 good bombing days in August and that of those 6 days a conservative estimate would probably result in safely predicting that we would have 3 good days in the month of August but these 3 good days could not be positively predicted in advance of more than 48 hours. 

Elsewhere in the memo it remarks that “3/10ths or less” cloud coverage was considered acceptable for visual bombing. It also notes that “only once in 6 years have there ever been 2 successive good visual bombing days of Tokyo,” which gives some indication of the weather’s variability.

Weather from the nearby city of Shimonoseki for August 8-9, 1945. Click to enlarge, or click here for the Excel file. Source: Japanese M

Weather from the nearby city of Shimonoseki for August 8-9, 1945. Click to enlarge, or click here for the Excel file. Source: Courtesy of the Japanese Meteorological Agency.

So it doesn’t seem impossible that it could have just been according to the weather, though the big difference between the conditions reported by the weather plane and the observed conditions by the strike plane seem, on the face of it, beyond what a half hour’s delay would accomplish. One question I don’t have the answer for is when the weather plane radioed those conditions back. In the case of the Hiroshima run, the weather plane was only 30 minutes earlier than the strike plane. If we assume that was a similar attempt on the second mission, it would mean that the strike plane was reaching the target over an hour after the weather plane had seen it, which could be a significant-enough delay for a serious change in visibility. (And another possibility is that the weather plane could have been, for whatever reason, incorrect — either at the wrong place or had its message garbled.)

There aren’t good weather records from this period, at least none I have seen. The closest site for state weather recording was in Shimonoseki, some 7 miles / 11 km northeast of Kokura. I asked the Japan Meteorological Agency for any records they had from that period and they sent me the above data.5 It is not especially helpful towards answering this question that I can see, but I’m not a meteorologist in the slightest. For me, the big take-away from the data is that it could go from totally clear to totally obscured over the course of an hour, which at least supports the plausibility of the weather theory.

Theory #2: Smoke from firebombing

One of the other causes put forward is that the “smoke and haze” seen over Kokura was actually a result of nearby firebombing. On August 8th, 1945, the 20th AF had sent 221 B-29s to the nearby city of Yahata (Yawata) to drop incendiary bombs.6 Yahata had been bombed several times during the war. It was, in fact, the site of the first B-29 attack on the Japanese homeland in June 1944, and indeed the first bombing attack against the Japanese homeland at all since the Doolittle raid. It had been bombed again in August 1944. The USAAF considered Yahata to be the largest steel producing center in the country, and dubbed it “the Pittsburgh of Japan.” It was the last Japanese city to be hit by a massive B-29 raid, a “night burn job” as a USAAF writer put it, and it was considered “leftover business” that had been scheduled to take place much earlier but delayed because of bad weather.7

Yahata/Yawata target map, March 1945. Kokura arsenal is visible to the east. Source: JapanAirRaids.org. Click here for the uncropped, unadjusted version.

Yahata/Yawata target map, March 1945. Kokura arsenal is visible to the east. Source: JapanAirRaids.org. Click here for the uncropped, unadjusted version.

The weather at Yahata had been 4/10 clouds over the target, but this didn’t matter for B-29 firebombing raids, because accuracy was not as big a concern as with the atomic bombs. The planes had arrived at Yahata around noontime. I’ve found very little in terms of documentation about how much of Yahata was burned out with this raid — perhaps because it was so late in the war, many of the traditional sources for information about incendiary bombing results (especially those contained on the invaluable website JapanAirRaids.org) essentially omit any discussion of this final big raid.

Could the bombing of Yahata have been the cause of the smoke that obscured Kokura? It doesn’t seem impossible, but it seems to me to be somewhat unlikely.

Approximate areas of interest in Yahata and Kokura, as seen on Google Earth today.

Approximate areas of interest in Yahata and Kokura, as seen on Google Earth today.

Bockscar was flying over Kokura just a little under 24 hours after the Yahata raid began. Incendiary raids did produce extreme amounts of smoke cover, as other photographic evidence indicates clearly. Yahata was only around 6 miles / 9 km west of Kokura (and their proximity is emphasized by the fact that both are today just considered wards of a larger city, Kitakyushu).

It seems odd that the Yahata smoke would have caught them off-guard. Wouldn’t the weather plane have noticed that there was smoke over Yahata rolling towards Kokura, or at least threatening it? Yahata is close enough that at the 30,000 feet or so that a weather plane would be flying over Kokura, all they would have to do is glance in its direction to see if there was heavy cloud cover. (One can easily replicate this experience with Google Earth if one chooses.) Could the smoke cloud have been lagged behind by just the amount of time that the weather plane wouldn’t see it, then rush ahead to obscure Kokura an hour later? Could the smoke have gone from non-obscuring to obscuring in just an hour? At the wind speeds measured at Shimonoseki (around 2-12 mph), it doesn’t strike me as super likely, but I’m not an expert in this kind of thing.

Theory #3: Japanese smokescreen

One last, more obscure theory. I first read of this in John Coster-Mullen’s book. I will quote him here:

When [Bockscar] finally arrived at 10:44 AM, smoke and industrial haze had obscured Kokura. Yahata had been firebombed by over 200 of LeMay’s B-29’s the previous day and the smoke had drifted over nearby Kokura. There was also a POW camp right next door to the main downtown power plan. An American prisoner in this camp reported later the Japanese had installed a large pipe that went from the power plant down to the river. He stated that whenever B-29’s were sighted over Kokura, the steam in the plant was diverted through this pipe and into the river. This created enormous condensation clouds that also helped to obscure the city.

John himself seems to have interviewed the POW camp survivor in question, and notes in a footnote that he thinks this was the first time this claim had surfaced in print. I certainly hadn’t seen it anywhere prior to John’s book. John asked Commander Ashworth about this in 1995, and Ashworth replied that this seemed possible, and added “if the Japanese really did that, then they were damn clever!”

German smokescreen use at Wilhelmshaven in June 1943. Caption: "Despite a smoke screen, 168 B-17s of the Eighth Air Force attacked Wilhelmshaven on 11 June. There are three lines of generators to windward of the area covered when the wind is in the north, as it was in this case. Generator boats are at the upper left. Despite the extent of the smoke screen hits are observed inside the circle..." Source: USAAAF IMPACT magazine, vol. 1, No. 5, August 1945, page 18.

German smokescreen use at Wilhelmshaven in June 1943. Caption: “Despite a smoke screen, 168 B-17s of the Eighth Air Force attacked Wilhelmshaven on 11 June. There are three lines of generators to windward of the area covered when the wind is in the north, as it was in this case. Generator boats are at the upper left. Despite the extent of the smoke screen hits are observed inside the circle…” Source: USAAAF IMPACT magazine, vol. 1, No. 5, August 1943, page 18.

A few weeks ago, there was a story carried by Japanese newspapers along these lines:

As the 69th anniversary of the Nagasaki atomic bombing approaches, a former mill worker in the present-day city of Kitakyushu, Fukuoka Prefecture, spoke about his untold story on how he burned coal tar to block the view of U.S. aircraft as they were about to drop the A-bomb on the city. … Of the three workers, Oita resident Satoru Miyashiro, 85, who worked at a can factory in the steel mill at around the end of the war said he burned coal tar to lay a smoke screen on Aug. 9, 1945. … Miyashiro said about two days before the Nagasaki attack Yawata steel workers learned that Hiroshima had been wiped out by the “new bomb” from their colleagues who had come back to Yawata via Hiroshima. He thought the next target would be his city as there were arms factories located in the area.

Note that this isn’t quite the same thing — this is someone in Yahata who was burning coal tar after hearing an air raid drill, and the smoke going downwind (east) to Kokura. I find it a little odd that the worker in question doesn’t mention that Yahata itself was firebombed less than a day before he decided to do this.

Are either of these theories plausible? In terms of, could they have done these things — of course. Turning on an incinerator is not an implausible action, and neither is the steam cloud scenario.

But would this have reduced the visibility over Kokura from 3/10 to 7/10 in the time it took the strike plane to get there? I’m not an atmospheric scientist, so I wouldn’t want to hazard a strong position on this. One can presumably model both of these scenarios and see if either were possible. I would be extremely interested if anyone wanted to that!

Susquehanna Steam Electric Station — just an example of what a very large nuclear power plant can generate in terms of steam. It's a lot of steam. Could it obscure a city downwind of it from a B-29 bomber? Image source.

Susquehanna Steam Electric Station — just an example of what a very large nuclear power plant can generate in terms of steam. It’s a lot of steam. Could it obscure a city downwind of it from a B-29 bomber? Image source.

My gut thought is that they were not super likely to be wholly responsible for the cloud cover. If it had been steam from a single plant, I suspect someone on Bockscar would have noted it as such. We have lots of experience with steam-generating power plants — think of the clouds created by nuclear cooling towers. They certainly can put out a lot of steam. Would it be enough to block off the entire city? I’m kind of dubious.

What about the coal tar possibility? I’m especially dubious that this would have been enough. Setting up honest-to-god smokescreen for an entire city is hard work, even if you are a professional. When the Germans wanted to protect individual places (like plants) from bombers they set up dozens to hundreds of smoke pots to do the job, or used multiple dedicated smoke generators. Some of the larger smokescreen images I have found clearly involve lots of smoke sources placed at good intervals upwind of the target they are meant to protect. So I don’t know.

On the other hand, if the smoke from Yahata was not from the firebombing but instead something deliberate, it would explain the time delay issue. If the wind was going due east at around 5 mph, that would in fact be perfect for putting a smoke cover over Kokura. So it has its merits as a theory.

Conclusion

There are narrative aspects of each theory that appeal, and each of them change what is meant by the “luck of Kokura.” If bad weather is what saved Kokura, then it becomes a metaphor for how serendipitously life and death are dealt out by the hands of fate. If it was smoke from the firebombing of Yahata, then it becomes an ironic story about the Army Air Forces’ zeal for destruction could become counterproductive. If it was the result of deliberate action on behalf of the Japanese, then it becomes something much more complicated, a story about how individual action may have led to the saving of some lives… and the dooming of others. It also would change the standard story of how defenseless the Japanese were against these weapons.

The bombing of Nagasaki. Original source. Slightly edited to improve foreground/background distinction.

Of course, what was lucky for Kokura was not so for Nagasaki.

Looking at these three options, I find the weather theory the easiest one to stomach. Japanese weather patterns were notoriously hard to predict and it was known as the worst season for bombing conditions. That they could change over an hour seems unsurprising to me, especially for a coastal city, where clouds can come and go which impressive rapidity (as someone who has lived in the Berkeley, Boston, and New York areas can attest). I like the irony of the Yahata story, but there are things that just don’t add up — I don’t see why the weather plane would not have mentioned it, and it seems implausible to me that it would take almost exactly 24 hours for the heavy cloud cover to have migrated a mere 5-10 miles. And for reasons indicated, I’m not sure I buy the smokescreen story — it would have been really difficult to pull off that degree of cloud cover reliably. It would have taken tremendous foresight and luck. And it is strange that this story would be “buried” for so long. This doesn’t mean that someone didn’t try it (I am emphatically not calling anyone a liar!). It just means that I’m not sure it would have worked even if they did try it.

A separate possibility is “all of the above.” Maybe the weather was bad. Maybe there was haze from the Yahata bombing. Maybe someone did try to release steam or smokescreen. Maybe all of these things occurred at once, making “the luck of Kokura” something that was the result of multiple causes. That would make Kokura extra lucky, I suppose, and not fit into any of the above pat narratives. And make Nagasaki extra un-lucky in turn.

In the end, it doesn’t really matter which of these things happened. The bare fact is that Kokura didn’t get bombed and Nagasaki did. But I find looking into these kinds of questions useful as a historian. Too often it is easy to take for granted that the explanations given in narrative works of history are “settled,” when really they are often resting on very thin evidence, thinner perhaps than the historian who writes them realizes. I don’t think we really know what happened at Kokura, and I’m not sure we ever truly will.

Notes
  1. Sometimes you see it as “Bock’s Car,” but it said “Bockscar” on the side of the B-29. This is one of those places where I say, “who cares?” but purists are concerned with this kind of detail. []
  2. Flight diary of Lt. Fred Olivi, quoted in Coster-Mullen’s book. []
  3. Bockscar flight log by Commander Frederick Ashworth, included in Norman F. Ramsey, “History of Project A,” (27 September 1945). A full of copy of Ramsey’s report is included in Coster-Mullen’s Atom Bombs book. []
  4. Leslie Groves, Now it Can Be Told, 345: “At Kokura, they found that visual bombing was not possible, although the weather plane had reported that it should be. Whether this unexpected condition was due to the time lag, or to the difference between an observer looking straight down and a bombardier looking at the target on a slant, was never determined.” []
  5. Here is the original Excel file they sent me. []
  6. Most US sources list the city as “Yawata,” but it apparently corresponds with what is today transliterated as the city of Yahata, in Fukoka prefecture, and there is an entirely different city known as Yawata in Kyoto Prefecture. The kanji is the same. Yahata has since been absorbed by Kitakyushu, along with Kokura. []
  7. Tom Prideaux, “Mission to Yawata, 7 Aug. 1945,” IMPACT, vol. 3, no. 9 (September-October 1945), 53. []