Posts Tagged ‘Bomb design’


What did Bohr do at Los Alamos?

Monday, May 11th, 2015

In the fall of 1943, the eminent quantum physicist Niels Bohr managed a dramatic escape from occupied Denmark, arriving first in Sweden, then going to the United Kingdom. He was quickly assimilated into the British part of the Manhattan Project, then well underway. Bohr’s institute in Copenhagen had long been considered the world center of theoretical physics, and in the 1920s, young students from around the world flocked to work with him there. Now, in December 1943, Bohr and his son Aage made their pilgrimage to what was quickly becoming the new, stealth center of nuclear expertise: Los Alamos. At age 59, he would be the oldest scientist on “the Hill,” a place where the average age was 29.

Bohr skiing at Los Alamos, January 1945, seemingly without a care in the world. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

Bohr skiing at Los Alamos, January 1945, seemingly without a care in the world. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

This much is a standard part of Manhattan Project lore. Bohr’s contributions are usually spoken of primarily in psychological and moral terms. Bohr inspired the physicists to think about the consequences of their work, and laid the seeds of what would become the effort for postwar international control. He also spoke with both Churchill and Roosevelt, ineffectively, about the need to avoid an arms race. Bohr was a notoriously poor oral communicator, typically being barely audible. His deeply alienated and disturbed Churchill, who thought he might be proposing to tell the Soviets about the weapon. He probably just bored Roosevelt.

Some of the stories of his conduct at Los Alamos are adorably absent-minded. One of my favorite memos in the Manhattan Project archives is a February 1944 letter from Lt. Col. John Lansdale, head of MED security, to Richard Tolman, a physicist who was a good friend of the Bohrs. “Subject: Nicholas Baker,” it starts out, using Bohr’s wartime codename, and explains that in the process of following Bohr around, to make sure he was safe, some, well, deficiencies in his judgment were encountered:

“Both the father and son appear to be extremely absent-minded individuals, engrossed in themselves, and go about paying little attention to any external influences. As they did a great deal of walking, this Agent had occasion to spend considerable time behind them and observe that it was rare when either of them paid much attention to stop lights or signs, but proceeded on their way much the same as if they were walking in the wood. On one occasion, subjects proceeded across a busy intersection against the red light in a diagonal fashion, taking the longest route possible and one of greatest danger. The resourceful work of Agent Maiers in blocking out one half of the stream of automobile traffic with his car prevented their possible incurring serious injury in this instance.”

… I understand that the Bakers will be in Washington in the near future, at which time you will unquestionably see them. If the opportunity should present itself, I would appreciate a tactful suggestion from you to them that they should be more careful in traffic.1

Nobel-Prize winning physicist nearly run over by a car, because he treats American streets like paths in a forest, saved from disaster only by a trailing secret agent blocking the road with his car? You can’t make this stuff up. These kinds of stories reinforce the playful, harmless, “Uncle Nick” character that Bohr has come to represent in this period.

Bohr and General Groves' personal technical advisor, Richard Tolman, attending the opening of the Bicentennial Conference on "The Future of Nuclear Science," circa 1947. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

Bohr and General Groves’ personal technical advisor, Richard Tolman, attending the opening of the Bicentennial Conference on “The Future of Nuclear Science,” circa 1947. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

But the truth is a little more complicated. For his part, Bohr would later downplay his role in the actual creation of nuclear weapons. He told another physicist in 1950, for example, that he had spent most of his time while in the United States trying to forestall a nuclear arms race. “That is why I went to America… They didn’t need my help in making the atom bomb,” he later said.2

Did they need Bohr? Probably not — they probably would have managed well enough without him. But this is an odd standard for talking about one’s role in making a weapon of mass destruction. They didn’t need almost any individual who worked on the bomb, in the sense that they could have salvaged on without them.3

And not being “needed” does not really get one off the hook, does it? Which gets at what I think is a key point here: in the postwar, Bohr never relied on his contributions to the bomb as a means of claiming moral superiority, responsibility, or political leverage. He was active in attempts to promote international control and avoid an arms race, but he didn’t do so in a way that ever owned up to his own role in making the bomb. As a result, a lot of people seem to believe that Bohr didn’t really do that much at Los Alamos other than provide the aforementioned moral support and provocative questions.

In fact, Bohr did work on the bomb. And not just on esoteric aspects of the physics, either; one of his role was concerned with the very heart of the “Gadget.”

Niels Bohr (r) conversing animatedly with his son Aage in front of a board full of equations. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

Niels Bohr (r) conversing animatedly with his son Aage in front of a board full of equations. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

One of the key parts of the implosion design for the atomic bomb (the same sort of bomb detonated at Trinity and over Nagasaki) is the neutron initiator that sits at the absolute center of the device. It is a deceptively tricky little contraption. At the instance of maximum compression, it needs to send out a small burst of neutrons, to get the whole chain reaction started. It’s not even that many neutrons, objectively speaking — on the order of a hundred or so in the first bombs. But conjuring up a hundred neutrons, at the center of an imploding nuclear assembly, at just the right moment, was a tricky technical problem, apparently.

The details are still classified-enough that figuring out exactly what the nature of the problem is proves a little tough in retrospect. In an interview many years later, the physicist Robert Bacher, head of G (Gadget) Division during the war, recalled that for whatever reason, Enrico Fermi had become particularly focused on the initiator as the lynchpin of the bomb, and maybe his own conscience:

I think Fermi began to be very worried about the fact that this terrific thing that he’d sort of been the father of was going to turn into a great big weapon. I think he was terribly worried about it. … I think he [Fermi] was worried about the whole project, not just the initiator. But focusing on the initiator was the one thing that he thought he could look at. The thing really might not work.

And I think he also felt an obligation to take something that was as hare-brained as this was and try to find a way in which it really wouldn’t work. So he did look into every sort of thing, and I think every second day or so for a period, I’d see him and he’d come up or he’d see Hans [Bethe] and come up with a new reason why the initiator wouldn’t work. …4

Bacher got sick of Fermi’s interference, and eventually went to Oppenheimer to complain. Bacher recalled:

I said, “What I’d like to do is, Uncle Nick is here now, and I’d like to go and explain to him about the initiator and say I’d like his advice and counsel on whether he thinks it will work or not. We’ll answer any question that he puts to us, that we know the answer to.” So we did and he agreed with us and I told him quite frankly, “One of the reasons that we want to do this is that Fermi has so many misgivings about initiators.”

So I talked to him for a long while and then he spent about two days with his son Aage going over every single thing that had been done on this business. I saw him after this and he said, “My that’s very impressive. I think that will work.” I said, “Well now comes the test. Will you talk to Fermi about this? The two of you talk together and give me some counsel of what’s up on this?” So he did. And it made a lot of difference to have Uncle Nick talk to Fermi, because he felt that this wasn’t somebody you had working on some particular model and so on. It was sort of somebody from the outside, and I think it made Fermi feel a lot happier. And it certainly made it a lot easier for us.5

The initiator that “Uncle Nick” convinced Fermi of, the one that they ended up using in the Trinity and Nagasaki bombs, was the “Urchin.”

A schematic of the “Urchin,” as imagined by me, based on a postwar British account.

It was a hollow sphere of beryllium, a mere two centimeters in diameter. The inner side of the sphere was machined with grooves, facing inwards. At the center of these grooves was another sphere of beryllium, centered by pins embedded in the outer shell. On both the inner grooves of the outer shell, and the outer surface of the inner sphere were coated with nickel and gold. Onto the nickel of the inner sphere was a thin film of virulently radioactive polonium. Polonium emits alpha particles; in the non-detonated state of the “Urchin,” these would be absorbed harmlessly by the gold and nickel. But when the bomb came imploding in around it, the beryllium and polonium would be violently mixed, producing a well-known reaction (beryllium + an alpha particle = carbon + neutron) that produced the necessary neutrons.6

Margrethe and Niels Bohr converse in Copenhagen, 1947, in this extremely rare color photo. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

Margrethe and Niels Bohr converse in Copenhagen, 1947, in this extremely rare color photo. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

“Urchin” wasn’t the only initiator design on the table. Fermi apparently favored a design with the codename “Grape Nuts.” What was “Grape Nuts”? I have no idea — it’s still classified. Presumably these names meant something, since “Urchin” seems to reference the internal spikes. A topic listing for a May 1945 laboratory colloquium at Los Alamos discussed three initiator designs and their creators: “Urchin,” attributed to James Tuck and Hans Bethe; “Melon-Seed,” attributed to James Serduke; and, lastly, “Nichodemus,” attributed to… Nicholas Baker, the codename for Niels Bohr.7

In the recently-declassified Manhattan District History, there are several paragraphs on Bohr. Most of them describe theoretical work he did on the physics of nuclear fission after arriving at the lab, which “cleared up many questions that were left unanswered before.” His work affected their understanding the nuclear properties of tamper materials, and he apparently gave them ideas for “new and better methods… of alternative means of bomb assembly.” (All of which apparently just pointed to the superiority of implosion, in the end, but still.)

MHD Bohr contributions to bomb

At least one sentence in the Manhattan District History is still completely blacked out. Maybe it refers to the initiator design (which the previous sentence refers to), maybe it refers to something else. It’s interesting that seven decades later, something of what Bohr worked on was still considered too classified to reproduce — evidence that Bohr’s influence on the bomb was less trivial than he would later make it out to be.8

Why does it matter? In Michael Frayn’s Copenhagen, there is, towards the end of the play, an implied asymmetry between Bohr and Heisenberg. Heisenberg is criticized throughout the play for potentially making an atomic bomb for Hitler. The play ultimately says Heisenberg didn’t make an atomic bomb in part because he wasn’t trying to make a bomb. (It does so with perhaps a little bit too much credence to the “he didn’t do it because he was sabotaging it thesis,” which I think there is no evidence for and no reason to believe, but anyway.) Driven by his fears, Bohr goes to the United States and actually does work on the bomb, does contribute to the killing of over a hundred thousand people, and so on. And so there is some irony there, where Heisenberg, supposedly the one in a state of moral jeopardy, is the one who actually contributes to the death of no one, where Bohr, supposedly the moral authority, is the one who helps build the bomb.

Bohr with Elisabeth and Werner Heisenberg in Athens, Greece, 1956. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

Bohr with Elisabeth and Werner Heisenberg in Athens, Greece, 1956. Source: Emilio Segrè Visual Archives, Niels Bohr Library, American Institute of Physics.

Do Bohr’s contributions to the atomic bomb, however major or minor, weaken his moral authority? I don’t really think so. Bohr’s strongest and most lasting contribution was putting the bug of international control into the heads of people like Oppenheimer. That bug might have come up on its own (when they learned about Bohr’s scheme, Vannevar Bush and James Conant were surprised to find that they had been thinking along almost exactly the same lines, completely independently), but Bohr’s influence on openness, candor, the moral obligation of scientists, and so on had a profound effect on postwar political discourse, even if his dreaded arms race was not avoided. In this light, I think Bohr still comes off pretty well, even if the bomb still does contain traces of his fingerprints.

  1. John Lansdale to Richard Tolman, “Subject: Nicholas Baker,” (5 February 1944), Manhattan Engineer District (MED) records, Records of the Army Corps of Engineers, RG 77, National Archives and Records Administration, College Park, MD, Box 64, “Security.” []
  2. J. Rud Nielson, “Memories of Niels Bohr,” Physics Today 16, no. 10 (Oct. 1963), 28-29. []
  3. I am occasionally drawn into a game of “who is so important that you absolutely couldn’t remove them and still expect it to be successful?” I am inclined to think that almost everyone would be more or less replaceable, as individuals, though there are a few whose contributions were so pivotal that removing them would create serious issues. Someday I will post some concrete thoughts on this on this. []
  4. Robert Bacher interview with Lillian Hoddeson and Alison Kerr (30 July 1984), Robert Bacher papers, Caltech Institute Archives, Pasadena, CA, Box 48, Folder 5. []
  5. Ibid. []
  6. Accounts of the exact dimensions of the “Urchin” vary from source to source. John Coster-Mullen’s book, Atom Bombs, gives what I find to be convincing evidence that it was 0.8 in./2 cm in diameter. There was 20 curies of polonium deposited in them, and they had to be replaced frequently because of polonium’s low half-life. The inner core of the plutonium pit was about 1 in. in diameter, and apparently both the core and the initiator would be expected to expand slightly due to the heat generated by their radioactivity. Apparently James Tuck gave it the name “Urchin,” on account of its inner ridges. There is some question as to how the grooves were machined, whether they were pyramids (as in the British account) or ridges (e.g. like a theatre in the round). It’s always nice to be reminded that there are still a few secret details out there. []
  7. The list of wartime colloquia comes from the Klaus Fuchs FBI File, Part 49 of 111, available on the FBI’s website, starting on page 49 of the PDF. The only other “Nicholas Baker” contribution mentioned in the document is a November 1944 talk on “nuclear reactions of heavy elements and particularly the various results obtained when a neutron comes in contact with heavy nuclei, such as Uranium 238.” []
  8. Manhattan District History, Book 8 (Los Alamos Project), Volume 2 (Technical), pages II-2 to II-3. []

Critical mass

Friday, April 10th, 2015

When we talk about how nuclear weapons work, we inevitably mention the “critical mass.” This is the amount of fissile material you need to create a self-sustaining nuclear reaction. But it’s a very tricky concept, one often poorly deployed and explained, and the result, I have found while teaching and while talking to people online, is an almost universal confusion about what it means on a physical level.

One of the ways in which the critical mass is visually explained in Glasstone and Dolan's The Effects of Nuclear Weapons (1977 edn.). Want it on a t-shirt? I've got you covered.

One of the ways in which the critical mass is visually explained in Glasstone and Dolan’s The Effects of Nuclear Weapons (1977 edn.). Want it on a t-shirt? I’ve got you covered.

Where does the term come from? In the Smyth Report released in August 1945, the term “critical size” is used almost universally, while “critical mass” is used exactly once (and parenthetically, at that). A more interesting term, the “critical condition,” is used in a few places. The Los Alamos Primer, from 1943, uses critical “radius,” “volume,” “conditions,” in addition to “mass.” The MAUD Report, from 1941, uses critical “size,” “value,” and “amount” — not mass. The Frisch-Peirels memorandum, from 1940, uses critical “radius,” “size,” and “condition.” Leo Szilard’s pre-fission, 1935 patent on chain reacting systems uses the terms critical “thickness,” and “value,” not mass. This is not to imply that people didn’t use the term “critical mass” at the time — but it was one term among many, not the only term. The earliest context I have found it being used extensively comes from a paper in 1941, where it was being used specifically to talk about whether masses of fissile material could be made to explode on demand and not before.1

Why use “critical mass” instead of other terms? For one thing, talking about the mass can help you get a sense of the size of the problem when fissile material is scarce and hard to produce (producing fissile material consumed 80% of the Manhattan Project’s budget). And it can also help you when talking about safety questions — about avoiding a nuclear reaction until you absolutely want on. So you don’t want to inadvertently create a critical mass. And knowing that the critical mass is so many kilograms of fissile material, as opposed to so many tons, was an early and important step in deciding that an atomic bomb was feasible in the first place.

A 5.3 kg ring of 99.96% pure plutonium-239. Under some conditions, this is enough to produce a significant explosive output. In its current form — unreflected, at normal density, in a ring-shape that prevents any neutrons from finding too many atoms to fission with — it is relatively innocuous.

A 5.3 kg ring of 99.96% pure plutonium. Under some conditions, this is enough to produce a significant explosive output. In its current form — unreflected, at normal density, in a ring-shape that prevents any neutrons from finding too many atoms to fission with — it is relatively innocuous.

What I don’t like about the term, though, is that it can easily lead to confusion. I have seen people assert, for example, that you need a “critical mass” of uranium-235 to start a nuclear reaction. Well, you do — but there is no one critical mass of uranium-235. In other words, used sloppily, people seem to often think that uranium-235 or plutonium have single values for their “critical mass,” and that “a critical mass” of material is what you use to make a bomb. But it’s more complicated than that, and this is where I think focusing on the mass can lead people astray.

Put simply, the amount of fissile material you need to start a nuclear reaction varies by the conditions under which it is being considered. The mass of material matters, but only if you specify the conditions under which it is being kept. Because under different conditions, any given form of fissile material will have different critical masses.

I’ve seen people (mostly online) want to talk about how nuclear weapons work, and they look up what “the” critical mass of uranium-235 is, and they find a number like 50 kg. They then say, OK, you must need 50 kg to start a nuclear reaction. But this is wrong. 50 kg of uranium-235 is the bare sphere critical mass of uranium-235. In other words, if you assembled 50 kg of uranium-235 into a solid sphere, with nothing around it, at normal atmospheric conditions, it will start a self-sustaining chain reaction. It probably would not produce an explosion of great violence — the uranium sphere would probably just blow itself a few feet apart (and irradiate anyone nearby). But once blown apart, the reaction would stop. Not a bomb.

The Godiva Device, a "naked" (get it?) critical assembly used as a pulsed nuclear reactor at Los Alamos. A 54 kg near-bare sphere of 93.7% enriched uranium separated into three pieces. At left, it is separated safely — no reaction. At right, you see what happened when the pieces got close enough to start a critical reaction — not a massive explosion (thank goodness), but enough energy output to damage the machine, and to push those pieces of uranium far enough from each other that they could no longer react.

The Godiva Device, a “naked” (get it?) critical assembly used as a pulsed nuclear reactor at Los Alamos. A 54 kg near-bare sphere of 93.7% enriched uranium separated into three pieces. At left, it is separated safely — no reaction. At right, you see what happened when the pieces got close enough to start a critical reaction — not a massive explosion (thank goodness), but enough energy output to damage the machine, and to push those pieces of uranium far enough from each other that they could no longer react. The workers were fortunately a safe distance away.

So does that mean that 50 kg of uranium-235 is a important number in and of itself? Only if you are assembling solid spheres of uranium-235.

Is 50 kg the amount you need for a bomb? No. You can get away with much smaller numbers if you change the conditions. So if you put a heavy, neutron-reflecting tamper around the uranium, you can get away with around 10 to 15 kg of uranium-235 for a bomb — a factor of 3-5X less mass than you thought you needed. If your uranium-235 is dissolved in water, it takes very low masses to start a self-sustaining reaction — a dangerous condition if you didn’t mean to start one! And it may be possible, under very carefully-developed conditions, to make a bomb with even smaller masses. (The bare-sphere critical mass of plutonium is around 10 kg, but apparently one can get a pretty good bang out of 3-4 kg of it, if not less, if you know what you are doing.)2

Conversely, does this mean that you can’t possibly have 50 kg of uranium (or more) in one place without it detonating? No. If your uranium is fashioned not into a solid sphere, but a cylinder, or is a hollow sphere, or has neutron-absorbing elements (i.e. boron) embedded in it, then you can (if you know what you are doing) exceed that 50 kg number without it reacting. And, of course, there are also impurities — the amount of uranium-238 in your uranium-235 will increase the size of any critical mass calculation.

In other words, under different conditions, the mass of fissile material that will react varies, and varies dramatically. These different conditions include different geometries, densities, temperatures, chemical compositions/phases, and questions about whether it is embedded into other types of materials, whether there are neutron-moderating substances (i.e. water) present, enrichment levels, and so on. It’s not a fixed number, unless you also fix all of your assumptions about the conditions under which it is taken place.

Re-creation of Slotin's fatal experiment with the third core. (Source: Los Alamos)

Re-creation of Louis Slotin’s fatal experiment with the third plutonium core. The problem wasn’t the mass of the core, it was that Slotin inadvertently changed the state of the system (by accidentally letting the reflector drop onto it completely when his screwdriver slipped), which took a safe, non-critical assemble of plutonium and moved it into a briefly-critical state. This produced no explosion, but enough radiation to be fatal to Slotin and damaging to others in the room.

The classic example of this, of course, is the implosion bomb design. The bare sphere critical mass of plutonium-239 is 10 kg. The Nagasaki bomb contained 6.2 kg of plutonium as its fuel. At normal, room-temperature densities, a solid sphere of 6.2 kg of plutonium is not critical. Increase its density by 2.5X through the careful application of high explosives, however, and suddenly that is at least one critical mass of plutonium. Even this is something of an oversimplification, because it’s not just the density that matters: the allotropic (chemical) phase of plutonium, for example, affects its critical mass conditions (and plutonium is notorious for having an unusual number of these phases), and the Nagasaki bomb also included many other useful features meant to help the reaction along like a neutron initiator (which gave it a little shot of about 100 neutrons to start things off), and a heavy, natural-uranium tamper.

What I dislike about the term “critical mass,” as well, is that it can serve to obscure the physical process that defines “criticality.” It can make it seem like reactivity is a function of the mass alone, which is wrong. Worse, it can keep people from realizing why the mass matters in the way it does (among other things). And this can lead to confusion on questions like, “how much explosive power does a critical mass release?” The answer is… it has nothing to do with the critical mass per se. That is a question of bomb efficiency, which can seem like a secondary, separate question. But both the question of criticality and efficiency are really one and the same phenomena — if you understand the underlying physical process on an intuitive level.

Criticality, the “critical condition,” is defined as the point at which a chain reacting system becomes self-sustaining. So we can imagine a whole sea of uranium-235 atoms. Neutrons enter the system (either from a neutron source, spontaneous fissioning, or the outside world). If they are absorbed by a uranium-235 nucleus, they have a chance of making it undergo fission. That fission reaction will produce a random number (2.5 on average) of secondary neutrons. To be critical, enough of these neutrons will then have to go on to find other uranium nuclei to keep the overall level of neutrons (the “neutron economy”) constant. If that total number of neutrons is very low, then this isn’t very interesting — one neutron being replenished repeatedly isn’t going to do anything interesting. If we’ve already got a lot of neutrons in there, this will generate a lot of energy, which is essentially how a nuclear reactor works once it is up and running.

Supercriticality, which is what is more important for bomb design (and the initial stages of running a reactor) is when your system produces more than one extra neutron in each generation of fissioning. So if our uranium atom splits, produces 2 neutrons, and each of those go on to split more atoms, we’re talking about getting two neutrons for every one we put into the system. This is an exponentially-growing number of neutrons. Since neutrons move very quickly, and each reaction takes place very quickly (on the order of a nanosecond), this becomes a very large number of neutrons very quickly. Such is a bomb: an exponential chain reaction that goes through enough reactions very quickly to release a lot of energy.

The Trinity Gadget - Sectional View

A sectional view of a rendering of the Trinity “Gadget” I made. The 6.2 kg sphere of plutonium (the second-to-last sphere in the center, which encloses the small neutron initiator) is a safe-to-handle quantity by itself, and only has the possibility of becoming super-critical when the high explosives compress it to over twice its original density. Sizes are to scale.

So what are the conditions that produce these results? Well, it’s true that if you pure enough fissile material in one place, in the right shape, under the right conditions, it’ll become critical. Which is to say, each neutron that goes into the material will get replaced by at least another neutron. It will be a self-sustaining reaction, which is all that “criticality” means. Each fission reaction produces on average 2.5 more neutrons, but depending on the setup of the system, most or all of those may not find another fissile nuclei to interact with. If, however, the system is set up in a way that means that the replacement rate is more than one neutron — if every neutron that enters or is created ends up creating in turn at least two neutrons — then you have a supercritical system, with an exponentially-increasing number of neutrons. This is what can lead to explosions, as opposed to just generating heat.

In a bomb, you need more than just a critical reaction. You need it to be supercritical, and to stay supercritical long-enough that a lot of energy is released. This is where the concept of efficiency comes into play. In theory, the Fat Man’s 6.2 kg of plutonium could have released over 100 kilotons worth of energy. In practice, only about a kilogram of it reacted before the explosive power of the reaction separated the plutonium by enough that no more reactions could take place, and “only” released 20 kilotons worth of energy. So it was about 18% efficient. The relative crudity of the Little Boy bomb meant that only about 1% of its fissile material reacted — it was many times less efficient, even though it had roughly 10X more fissile material in it than the Fat Man bomb. The concept of the critical mass, here, really doesn’t illuminate these differences, but an understanding of how the critical reactions work, and how the overall system is set up, does.

This understanding of criticality is more nuanced than a mere mass or radius or volume. So I prefer the alternative phrasing that was also used by weapons designers: “critical assembly” or “critical system.” Because that emphasizes that it’s more than one simple physical property — it’s about how a lot of physical properties, in combination with engineering artifice, come together to produce a specific outcome.

I’ve been playing around with the scripting language Processing.js recently, in my endless quest to make sure my web and visualization skills are up-to-date. Processing.js is a language that makes physics visualizations (among other things) pretty easy. It is basically similar to Javascript, but takes care of the “back end” of graphics to a degree that you can just say, “create an object called an atom at points x and y; render it as a red circle; when it comes into contact with another object called a neutron, make it split and release more neutrons,” and so on. Obviously it is a little more arcane than just that, but if you have experience programming, that is more or less how it works. Anyway, I had the idea earlier this week that it would be pretty easy to make a simple critical assembly “toy” simulation using Processing, and this is what I produced:

Critical Assembly Simulator

The gist of this application is that the red atoms are uranium-235 (or plutonium), and the blue atoms are uranium-238 (or some other neutron-absorbing substance). Clicking on an atom will cause it to fission, and clicking on the “fire neutron initiator” button will inject a number of neutrons into the center of the arrangement. If a neutron hits a red atom, it has a chance to cause it to fission (and a chance to just bounce off), which releases more atoms (and also pushes nearby atoms away). If it hits a blue atom, it has a chance to be absorbed (turning it purple).

The goal, if one can put it that way, is to cause a chain reaction that will fission all of the atoms. As you will see from clicking on it, in its initial condition it is hard to do that. But you can manipulate a whole host of variables using the menu at the right, including adding a neutron reflector, changing the number of atoms and their initial packing density, the maximum number of neutrons released by the fission reaction, and even, if you care to, changing things like the lifetimes of the neutrons, the likelihood of the neutrons just scattering off of atoms, and whether the atoms will spontaneously fission or not. If you have a reflector added, you can also click the “Implode” button to make it compress the atoms into a higher density.3

The progress of a successful reaction using an imploded reflector. The little yellow parts are a "splitting atom" animation which is disabled by default (because it decreases performance).

The progress of a successful reaction using an imploded reflector. The little yellow parts are a “splitting atom” animation which is disabled by default (because it decreases performance).

This is not a real physical simulation of a bomb, obviously. None of the numbers used have any physically-realistic quality to them, and real atomic bombs rely on the fissioning of trillions of atoms in a 3D space (whereas if you try to increase the number of atoms visible to 1,000, much less 10,000, your browser will probably slow to a crawl, and this is just in 2D space!).4 And this simulator does not take into account the effects of fission products, among other things. But I like that it emphasizes that it’s not just the number of atoms that determines whether the system is critical — it’s not just the mass. It’s all of the other things in the system as well. Some of them are physical constants, things pertaining to the nature of the atoms themselves. (Many of these were constants not fully known or understood until well after 1939, which is why many scientists were skeptical that nuclear weapons were possible to build, even in theory.) Some of them are engineering tricks, like the reflector and implosion.

My hope is that this kind of visualization will help my students (and others) think through the actual reaction itself a bit more, to help build an intuitive understanding of what is going on, as a remedy to the aspects of a prior language that was created by scientists, diffused publicly, and then got somewhat confused. “Critical mass” isn’t a terrible term. It has its applications. But when it can lead to easy misunderstandings, the language we choose to use matters.

  1. E.g. “Can system be controlled safely by dividing mass into two parts? Yes. We believe that it is possible with suitable technical supervision to assemble masses which will be known fractions of the critical mass and which will not explode during the assembly.” The authorship of the report is apparently several members of the Uranium Committee, but their specific names are unlisted. “Fast neutron chain reactions — Summary of discussion on recommendations of the Sub-section on theoretical aspects on October 24, 1941,” (24 October 1941), copy in Bush-Conant File Relating the Development of the Atomic Bomb, 1940-1945, Records of the Office of Scientific Research and Development, RG 227, microfilm publication M1392, National Archives and Records Administration, Washington, D.C., n.d. (ca. 1990), Reel 10, Target 21, Folder 162A, “Reports — Chain Reactions [1941].” []
  2. On the “how low can you go” question, I have found table A.1 in this report useful:International Panel on Fissile Material, “Global Fissile Material Report 2013: Increasing Transparency of Nuclear Warhead and Fissile Material Stocks as a Step toward Disarmament,” Seventh annual report of the International Panel on Fissile Material (October 2013). There is documentary evidence suggesting the Soviets managed to weapons with cores as little as 0.8 kg of plutonium, and got significant (e.g. >1 kiloton) yields from them. []
  3. For those who want it, the source code is here. It is sparsely commented. It is written, again, in Processing.js. []
  4. Just to put this into perspective, 1 kg of plutonium-239 is ~2.5 x 1024 atoms. []

To demonstrate, or not to demonstrate?

Friday, March 6th, 2015

As the atomic bomb was becoming a technological reality, there were many scientists on the Manhattan Project who found themselves wondering about both the ethics and politics of a surprise, unwarned nuclear attack on a city. Many of them, even at very high levels, wondered about whether the very threat of the bomb, properly displayed, might be enough, without the loss of life that would come with a military attack.

1945-06-12 - Franck Report

The Franck Report, written in June 1945 by scientists working at the University of Chicago Metallurgical laboratory, put it perhaps most eloquently:

the way in which nuclear weapons, now secretly developed in this country, will first be revealed to the world appears of great, perhaps fateful importance. … It will be very difficult to persuade the world that a nation which was capable of secretly preparing and suddenly releasing a weapon, as indiscriminate as the rocket bomb and a thousand times more destructive, is to be trusted in its proclaimed desire of having such weapons abolished by international agreement…. 

From this point of view a demonstration of the new weapon may best be made before the eyes of representatives of all United Nations, on the desert or a barren island. The best possible atmosphere for the achievement of an international agreement could be achieved if America would be able to say to the world, “You see what weapon we had but did not use. We are ready to renounce its use in the future and to join other nations in working out adequate supervision of the use of this nuclear weapon.”

They even went so far as to suggest, in a line that was until recently totally etched out of the historical record by the Manhattan Project censors, that “We fear its early unannounced use might cause other nations to regard us as a nascent Germany.” 

The evolution of the "Trinity" test fireball, at constant scale, with the Empire State Building for additional scale reference.

The evolution of the “Trinity” test fireball, at constant scale, with the Empire State Building for additional scale reference.

The idea of a “demonstration” was for many scientists a compelling one, and news of the idea spread to the various project sites. The idea would be to let the Japanese know what awaited them if they did not surrender. This would be more than just a verbal or textual warning, which could be disregarded as propaganda — they would set the bomb off somewhere where casualties would be low or minimal, but its nature easy to verify. If the demonstration did not work, if the Japanese were not receptive, then the bomb could be used as before. In the eyes of these scientists, there would be no serious loss to do it this way, and perhaps much to gain.

Of course, not all scientists saw it this way. In his cover letter forwarding the Franck Report to the Secretary of War, the physicist Arthur Compton, head of the Chicago laboratory, noted his own doubts: 1. if it didn’t work, it would be prolonging the war, which would cost lives; and 2. “without a military demonstration it may be impossible to impress the world with the need for national sacrifices in order to gain lasting security.” This last line is the more interesting one in my eyes: Compton saw dropping the bomb on a city as a form of “demonstration,” a “military demonstration,” and thought that taking a lot of life now would be necessary to scare the world into banning these weapons in the future. This view, that the bombs were something more than just weapons, but visual arguments, comes across in other scientists’ discussions of targeting questions as well.

Truman was never asked or told about the demonstration option. It is clear that General Groves and the military never gave it much thought. But the Secretary of War did take it serious enough that he asked a small advisory committee of scientists to give him their thoughts on the matter. A Scientific Panel, composed of J. Robert Oppenheimer, Arthur Compton, Enrico Fermi, and Ernest Lawrence, weighed in on the matter formally, concluding that: “we can propose no technical demonstration likely to bring an end to the war; we see no acceptable alternative to direct military use.”1

"Recommendations on the Immediate Use of Atomic Weapons," by the Scientific Panel of the Interim Committee, June 16, 1945. The full report (which also discusses the possibility of the H-bomb and many other things) is extremely interesting, as well — click here to read it in its entirety.

“Recommendations on the Immediate Use of Atomic Weapons,” by the Scientific Panel of the Interim Committee, June 16, 1945. The full report (which also discusses the possibility of the H-bomb and many other things) is extremely interesting, as well — click here to read it in its entirety.

I find this a curious conclusion for a few reasons. For one thing, are these four scientists really the best experts to evaluate this question? No offense, they were smart guys, but they are not experts in psychological warfare, Japanese political thought, much less privy to intercepted intelligence about what the Japanese high command was thinking at this time. That four physicists saw no “acceptable alternative” could just be a reflective of their own narrowness, and their opinion sought in part just to have it on the record that while some scientists on the project were uncomfortable with the idea of a no-warning first use, others at the top were accepting of it.

But that aside, here’s the other fun question to ponder: were they actually unanimous in their position? That is, did these four physicists actually agree on this question? There is evidence that they did not. The apparent dissenter was an unlikely one, the most conservative member of the group: Ernest Lawrence. After the bombing of Hiroshima, Lawrence apparently told his friend, the physicist Karl Darrow, that he had been in favor of demonstration. Darrow put this into writing on August 9, 1945, to preserve it for posterity should Lawrence come under criticism later. In Darrow’s recollection, Lawrence debated it with the other scientists for “about an hour” — a long-enough time to make it seem contentious. On August 17, after the bomb had “worked” to secure the peace, Lawrence wrote back to Darrow, somewhat denying this account, saying that it was maybe only ten minutes of discussion. Lawrence, in this later account, credits Oppenheimer as being the hardest pusher for the argument that unless the demonstration took out a city, it wouldn’t be compelling. I’m not sure I completely believe Lawrence’s later recant, both because Darrow seemed awfully convinced of his recollection and because so much changed on how the bomb was perceived after the Japanese surrendered, but it is all an interesting hint as some of the subtleties of this disagreement that get lost from the final documents alone. In any case, I don’t know which is more problematic: that they debated for an hour and after all that, concluded it was necessary, or that they spent no more than ten minutes on the question.2

1945-08-10 - Groves memo on next bombs

As an aside, one question that sometimes gets brought up at this point in the conversation is, well, didn’t they only have two bombs to use? So wouldn’t a demonstration have meant that they would have only had another bomb left, perhaps not enough? This is only an issue if you consider the timescale to be as it was played out — e.g., using both bombs as soon as possible, in early August. A third plutonium bomb would have been ready by August 17th or 18th (they originally thought the 24th, but it got pushed up), so one could imagine a situation in which things were delayed by a week or so and there would have been no real difference even if one bomb was expended on a demonstration. If they had been willing to wait a few more weeks, they could have turned the Little Boy bomb’s fuel into several “composite” core implosion bombs, as Oppenheimer had suggested to Groves after Trinity. I only bring the above up because people sometimes get confused about their weapon availability and the timing issue. They made choices on this that constrained their options. They had reasons for doing it, but it was not as if the way things happened was set in stone. (The invasion of Japan was not scheduled until November 1st.)3

So, obviously, they didn’t choose to demonstrate the bomb first. But what if they had? I find this an interesting counterfactual to ponder. Would dropping the bomb in Tokyo Bay have been militarily feasible? I suspect so. If they could drop the bombs on cities, they could probably drop them near cities. To put it another way: I have faith they could have figured out a way to do it operationally, because they were clever people.4

But would it have caused the Japanese high command to surrender? Personally, I doubt it. Why? Because it’s not even clear that the actual atomic bombings were what caused the Japanese high command to surrender. There is a strong argument that it was the Soviet invasion of Manchuria that “shocked” them into their final capitulation. I don’t know if I completely buy that argument (this is the subject of a future blog post), but I am convinced that the Soviet invasion was very important and disturbing to the Japanese with regards to their long-term political visions for the country. If an atomic bomb dropped on an actual city was not, by itself, entirely enough, what good would seeing a bomb detonated without destruction do? One cannot know, but I suspect it would not have done the trick.

The maximum size of a 20 kiloton mushroom cloud in Tokyo Bay, as viewed from the roof of the Imperial Palace today, as visualized by NUKEMAP3D. Firebombed Tokyo of 1945 would have afforded a less skyscraper-cluttered view, obviously.

The maximum size of the mushroom cloud of a 20 kiloton nuclear detonation in Tokyo Bay, as viewed from the roof of the Imperial Palace today, as visualized by NUKEMAP3D. Firebombed Tokyo of 1945 would have afforded a less skyscraper-cluttered view, obviously.

Of course, the Chicago scientists suspected that as well, but said it was necessary from a moral point of view. Sure, the Japanese might not surrender, but then, at least, you can say you showed them what was coming first.  As it was, we gave no real warning whatsoever before dropping it on Hiroshima. But here’s the question I come to next: could you demonstrate it, and then drop it on a city? That is, could the United States really say: “we have made this apocalyptic weapon, unleashed the atom, and many other peril/hope clichés — and we have chosen not to use it to take life… yet. But if you don’t give in to our demands, we will unleash it on your people.” How could that not look like pure blackmail, pure terrorism? Could they then turn around and start killing people by the tens of thousands, having announced their capability to do so? Somehow I suspect the public relations angle would be almost impossible. By demonstrating it first, they would be implying that they knew that it was perhaps not just another weapon, not just another way to wage war. And that acknowledgment would mean that they would definitely be seen as crossing a line if they then went on to use it.

As it was, that line, between the bomb as “just another weapon” and something “special,” was negotiated over time. I think the demonstration option was, for this reason, never really going to be on the table: it would have forced the American policymakers to come to terms with whether the atomic bomb was a weapon suitable for warfare on an earlier schedule than they were prepared to. As it was, their imagery, language, and deliberations are full of ambiguity on this. Sometimes they thought it would have new implications for “man’s position in the universe” (and other “special bomb” notions), sometimes they thought it was just an expedient form of firebombing with extra propaganda value because it would be very bright and colorful. Secrecy enabled them to hedge their bets on this question, for better or worse.

Without imagery like this, would the world fear nuclear weapons more, or less?

Without imagery like this, would the world fear nuclear weapons more, or less? When, if ever, would the first use of nuclear weapons in warfare have been?

So who was right? I don’t know. We can’t replay history to see what happened, obviously. I think the idea of a demonstration is an interesting expression of a certain type of ethical ideal, though it went so far against the practical desires of the military and political figures that it is hard to imagine any way it would have been pursued. I am not sure it would even have been successful, or resolved the moral bind of the atomic bomb.

I do find myself somewhat agreeing with those scientists who said that perhaps it was better to draw blood with the smaller, cruder bombs, before the really big ones came around — and they knew those were coming. If we didn’t have Hiroshima and Nagasaki, what would we point to, to talk about why not to use nuclear weapons? Would people think the bombs were not that impressive, or even more impressive than they were? I don’t know, but there is something to the notion that knowing the gritty, gruesome reality (and its limitations) is better than not. It took the Holocaust for the world to (mostly) renounce genocide, maybe it took Hiroshima and Nagasaki for the nuclear taboo to be established (arguably). That, perhaps, is the most hopeful argument here, the one that sees Hiroshima and Nagasaki as not just the first cities to be atomic bombed, but the last, but I am sure this is little solace to the people who were in those cities at the time.

  1. This was part of a larger set of recommendations these scientists made, including those which touched on the “Super” bomb, future governance of the atom, and other topics of great interest. Report of the Scientific Panel of the Interim Committee (16 June 1945), Harrison-Bundy Files Relating to the Development of the Atomic Bomb, 1942-1946, microfilm publication M1108 (Washington, D.C.: National Archives and Records Administration, 1980), Roll 6, Target 5, Folder 76, “Interim Comittee — Scientific Panel.” []
  2. Karl Darrow to Ernest Lawrence (9 August 1945), copy in Nuclear Testing Archive, NV0724362 [note the NTA has the wrong name and date on this in their database]; Ernest Lawrence to Karl Darrow (17 August 1945), copy in Nuclear Testing Archive,NV0724363. []
  3. On the composite core question, see J. Robert Oppenheimer to Leslie Groves (19 July 1945), copy in Nuclear Testing Archive, NV0311426; Leslie Groves to J. Robert Oppenheimer (19 July 1945), Correspondence (“Top Secret”) of the Manhattan Engineer District, Roll 1, Target 6, Folder 5B: “Directives, Memorandums, etc to and from Chief of Staff, Secretary of War, etc.” []
  4. To answer one other question that comes up: would such a demonstration create deadly fallout? Not if it was set to detonate high in the air, like at Hiroshima and Nagasaki. If it was detonated underwater the fallout would be mostly limited to the area around the bomb detonation itself. It would be hard to actually create a lot of fallout with a bomb detonated over water and not land, in any case. “Local fallout,” the acutely deadly kind, is caused in part by the mixing of heavier dirt and debris with the radioactive fireball, which causes the fission products to descend very rapidly, while they are still very “hot.” []

The button that isn’t

Monday, December 15th, 2014

One of my favorite articles from The Onion concerns the imagined allure of “the button”:

"Obama Makes It Through Another Day Of Resisting Urge To Launch All U.S. Nuclear Weapons At Once" - The Onion

Despite being constantly tempted by the seductive power of having an apocalyptic arsenal at his fingertips, President Barack Obama somehow made it through another day Tuesday without unlocking the box on his desk that houses “the button” and launching all 5,113 U.S. nuclear warheads. …

Though the president confirmed his schedule was packed with security briefings, public appearances, and cabinet meetings, he said he couldn’t help but steal a few glances at the bright red button, which is “right there, staring at [him], all the time.”

The article manages to wring a lot of humor out of the idea that on the President’s desk is a big red button that starts World War III.

Like much of The Onion’s satire, it is exceedingly clever in taking a common trope and pushing it into absurd territory. Even the physicality of the idea of a “button” is toyed with:

“Did you know that if you sort of put enough weight on the button with your fingertip, you can feel a little slack there before it actually clicks?” Obama added. “Thank you, and God bless America.”

I was thinking about this article a few months ago because I was asked by my friend from grad school, Latif Nasser, if I would be interested in talking to him and NPR’s Robert Krulwich about “the button” for a Radiolab episode they were working on. The Radiolab show was initially meant to be about buttons — in all senses of the term — but they kept finding that things that they thought were buttons were in fact either non-buttons or non-functional buttons. You can listen to the full episode here: “Buttons Not Buttons.”

You should listen to the whole episode, but — spoiler alert — the interesting thing about the nuclear “button” is that there isn’t a nuclear button. That is, nuclear war can’t be started by just pounding a big red button. Sorry. Waging a nuclear war requires a lot more activity, spread out across a vast geographical area, and is a complex interaction of technical, organizational, and political issues. In the Radiolab interview, I attempted to paint in broad strokes the kind of vast technical and organizational networks that are needed to maintain the United States’ command and control systems — the systems that let you use nukes when you want to, and make sure that nukes don’t get used when they are not supposed to be used.

The problem with a big red button is that someone might actually press it. Like a cat. Source: Ren and Stimpy, Space Madness.

The problem with a big red button is that someone might actually press it. Like a cat. Source: Ren and Stimpy, Space Madness.

The Onion article indicates, in its wry way, one of the key reasons there isn’t a single “button” — it would be way, way too dangerous. Nobody wants nuclear war to be that easy to start. Or, as I like to put it, you don’t want a nuclear weapon that can be set off by a cat. Because you know that, sooner or later, a cat would set it off. Such is the way of cats. There are places in the world where big red buttons exist. But they are usually used to stop activity, not start it. They are emergency shutoff switches, things that you need to push in a big hurry, without too much hassle. And even they might require you to break some glass first.

On the other hand, if you’re a believer in deterrence and all that, you don’t want it to be too hard to start nuclear war. So this is just another variation of the “always/never” problem: you want to be able to start nuclear war if you need to, and start it quickly and effectively, but on the other hand, you want to never start nuclear war accidentally.

"Nuclear C3 [Command, Control, Communication] Transport Systems" — an attempt to characterize the technical, organizational, and political systems needed to actually start nuclear war in the United States today. Source: The Nuclear Matters Handbook, by the Office of the Assistant  Secretary of Defense for Nuclear, Chemical, and Biological Defense Programs.

“Nuclear C3 [Command, Control, Communication] Transport Systems” — an attempt to characterize the technical, organizational, and political systems needed to actually start nuclear war in the United States today. Source: The Nuclear Matters Handbook, by the Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense Programs.

From a technical standpoint, this means that you have to engineer a pretty complex system. In principle, the United States President has complete control over whether nuclear war starts. But the President doesn’t work in a missile silo. So somewhere between the President and the silo has to be a delegation of authority, and a subsequent potential loss of control. One could, in theory, completely automate that control — you could install a single “button” — but aside from the technical difficulty of that, there are a lot of new potential errors that get introduced.

Eric Schlosser’s Command and Control is a great read if you are interested in how this problem gets addressed over the course of the Cold War. Michael Gordin’s Five Days in August is, in part, a great description of how these issues were wrangled with even in the earliest days of nuclear weapons as political control transferred from Potsdam to Washington and Tinian. If I could add footnotes to radio interviews, I would prominently name-check both of these books — they greatly improved my own understanding of this. As did the work of my friend Dan Volmar, who is writing a dissertation on US command and control systems. And I need to give a massive hat-tip to Stephen Schwartz, who clued me into the Roger Fisher “cut the heart out” that I wrote about a few years back.

A submarine-launched ballistic missile trigger. Courtesy of Stephen Schwartz.

A submarine-launched ballistic missile trigger. Photo by the always amazing Paul Shambroom; courtesy of Stephen Schwartz.

Of course, there sometimes are switches, keys, and — yes — buttons, as part of the overall launching systems. But they aren’t centralized, and they are always more complicated than a simple big, red button. US ICBM launches require two simultaneous keys to be turned by two different people, on different sides of the room, the idea being that the odds of two people deciding to collude on an illegal launch are lower than one. SLBM launches, Stephen Schwartz reports, require the use of a pistol-grip “trigger” that is kept in a safe— a button, of sorts, though one that is hard to accidentally set off.

OK, so there isn’t a single nuclear button. Why do we talk about a button? This is a great history of technology question — “the button” is a metaphor, and not a new one. Starting in the 19th century, “the button” (or the “push button” or other variations on the same thing) started becoming a standard English idiom for “quick and easy and automatic.” The idea that you “push a button” and something happens — as easy as that! — shows up in the late Machine Age and continues onward.

So “the button” is just a metaphor for how technology makes things easy. That’s why everything in The Jetsons is button-based — the future was meant to take this to the extreme, where George Jetson would just spend all day at work pressing a single button. (Of course, many of us do press buttons all day — I am pressing quite a few as I type this — but generally not just one button.) If you combine the button imagery with the atomic bomb, it becomes a comment on the way technology has made mass destruction easy.

"Now I am become Edison, Wrecker of Worlds": fictional account of Edison destroying England using "button no. 4," 1896. Source: The Electrical Trade, August 1, 1896.

“Now I am become Edison, Wrecker of Worlds”: fictional account of Edison destroying Great Britain using “button no. 4,” 1896. Source: The Electrical Trade, August 1, 1896, page 9.

In fact, the idea that technology had made it so easy to destroy the world that a single button could set it all off predates nuclear fission. In the 1890s, a Parisian newspaper published a skit about Thomas Edison destroying all of England by joining some wires and pushing “button No. 4.” For this anecdote, and several others relating to “pushbutton” world destruction prior to fission, I am grateful to Spencer Weart’s Nuclear Fear: A History of Images.1

There are other “button” stories I found while searching from newspaper and journal databases. In 1929, the famous American physicist Robert Millikan was quoted as saying that “no ‘scientific bad boy’ ever would be able to blow up the world by releasing atomic energy,” (!), and he later “scoffed at the idea that in the future by pressing a button a man might have an army of atomic servants wash his face, mend his clothing or make his bed.” In a 1932 review of the 1928 proto-atomic-bomb drama “Wings Over Europe,” it is noted that “All the scenes are set in Downing-street and the chief character is a young scientist who has presented to the cabinet a secret that could destroy the world by pressing a button.” In article from the Weekly Irish Times in 1932, it is feared that atomic energy will enable “a time when, by the pressing of a button or turning of a switch, it will be possible for somebody to explode the whole world like a penny balloon. It will be a tremendously lethal opportunity.” On these proto-atomic bomb fantasies, especially in the U.K. context, I found Graham Farmelo’s Churchill’s Bomb very useful. Churchill himself was an atomic-bomb speculator in the H.G. Wells vein, writing about atomic energy as early as 1931.

August 20, 1945: a LIFE magazine correspondent reports on "push-button" battles of the future.

August 20, 1945: a LIFE magazine correspondent reports on “push-button” battles of the future.

So when the actual atomic bomb came along, there was already a ready-made imagery to be applied to it. (And Weart’s book is excellent at demonstrating this well beyond the realm of buttons, too.) So when did people first start applying the button metaphor to the bomb? As early as late August 1945, there are discussions of “push-button” battles. By November 1945, when the physicist Edward Condon argued during Congressional testimony that “The next war should be described as the War of the Pushbuttons,” it was already something of a cliché. The idea of World War III being a “pushbutton war” started pretty early.

I have to admit, I was a little uncertain how the “button” line of discussion was going to come together when I was first contacted by Latif, but the more I thought about it, the more I thought it was a nice way to get into a lot of different, interesting issues both about the history of the bomb (and what “the button” means, metaphorically), but also in explaining why there isn’t a button, it allows for a nice, tangible, interesting way to bring up the questions involved in command and control systems — moving the discussion of the bomb out of the realm of pure imagery and into the tangible and real.

  1. The specific Edison piece, with “button No. 4,” comes from a source Weart cites: Wyn Wachhorst, Thomas Alva Edison: An American Myth (MIT Press, 1981), 103. A copy of the actual story is reproduced above, via Google Books (and thanks to Latif for finding that copy of it). []

Visualizing fissile materials

Friday, November 14th, 2014

I’ve had some very favorable interactions with the people at the Program on Science and Global Security at Princeton University over the years, so I’m happy to announce that four of the faculty have collaborated on a book about the control of fissile material stockpiles. Unmaking the Bomb: A Fissile Material Approach to Nuclear Disarmament and Non-Proliferation, by Harold Feiveson, Alex Glaser, Zia Mian, and Frank von Hippel, was recently published by MIT Press. Glaser, who does some pretty far-out work at the Nuclear Futures Lab (among other things, he has been working on really unusual ways to verify weapons disarmament without giving away information about the bombs themselves — a really tricky intersection of policy, technical work, and secrecy), asked me if I would help them design the cover, knowing that I like to both dabble in graphic arts as well as bomb-related things. Here is what we came up with, in both its rendered and final form:

Unmaking the Bomb cover and render

The “exploded” bomb here is obvious a riff on the Fat Man bomb, simplified for aesthetic/functional purposes, and was created by me using the 3-D design program Blender. (The rest of the cover, i.e. the typography, was designed by the art people at MIT Press.) The idea behind the image was to highlight the fact that the fissile material, the nuclear core of the bomb, made up a very small piece of the overall contraption, but that its importance was absolutely paramount. This is why the non-nuclear parts of the bomb are rendered as a sort of grayish/white “putty,” and the core itself as a metallic black, levitating above.

The original idea, proposed by Glaser, was to do sort of a modern version of a drawing that appears in Chuck Hansen’s U.S. Nuclear Weapons: The Secret History (Aerofax: 1988). Hansen’s image is a thing of beauty and wonder:

1988 - Chuck Hansen - Fat Man

I first saw this diagram when I was an undergraduate at UC Berkeley, working on a project relating to nuclear weapons — one of my first exposures to this kind of stuff. I had checked out pretty much every book on the subject that was in the Berkeley library system, which meant I found lots of unexpected, un-searched-for things serendipitously amongst the stacks. (This is something that I think has been lost, or at least not replicated, with increased reliance on digital sources.) I saw this diagram and thought, “Wow! That’s a lot of information about an atomic bomb! I wonder how he got all of that, and how much of it is real and how much is made up?” I don’t want to say this diagram is what made me want to study nuclear secrecy — origins and interests are always more complicated than that, and a close friend of mine recently reminded me that even in elementary school I used to talk about how nuclear bombs were made, armed with the beautiful-but-highly-inaccurate drawings from Macaulay’s The Way Things Work), but it did play a role.

Eventually I did track down a lot of information about this particular diagram. I found Hansen’s own original sketch of it (in his papers at the National Security Archive) that he gave to the artist/draftsman who drew the piece, Mike Wagnon:

Chuck Hansen Fat Man sketch

I also tracked down Wagnon, some years back now. He told me how he drew it. The original drawing was made many times larger than it was going to be in the book — it was four feet long! After being finished, it was reduced down to the size on the page in the book, so that it just looked like it was packed with fine detail. He also confirmed for me what I had come to suspect, that the diagrams in Hansen’s book, as Wagnon put it to me in 2004, “advertise an accuracy they do not have.” A lot of it was just deduced and guessed, but when you draw it like an engineering diagram, people assuming you know what you’re doing.1

Looking at it now, I can see also sorts of really serious errors that show the limits of Hansen’s knowledge about Fat Man in 1988. An obvious one is that it is missing the aluminum pusher which sits in between the tamper and the high explosives. There are other issues relating to the most sensitive parts of the core, things that John Coster-Mullen has spent several decades now working out the details of. Hansen, in his later Swords of Armageddon, corrected many of these errors, but he never made a diagram that good again. As an aside, Wagnon’s version of Little Boy — which we also now know, because of Coster-Mullen, has many things wrong — was the source of the “blueprint” for the bomb in the 1989 film Fat Man and Little Boy:

At top, Wagnon's diagram of Little Boy from Hansen's 1988 U.S. Nuclear Weapons. At bottom, a screenshot from the 1989 film, Fat Man and Little Boy, shows Oppenheimer pondering essentially the same image.

At top, Wagnon’s diagram of Little Boy from Hansen’s 1988 U.S. Nuclear Weapons. At bottom, a screenshot from the 1989 film Fat Man and Little Boy shows Oppenheimer pondering essentially the same image.

Anyway, I am getting off the thread a bit. Unmaking the Bomb, aside from having an awesome cover, is about fissile materials: enriched uranium and separated plutonium, both of which can be readily used in the production of nuclear weapons. The authors outline a series of steps that could be taken to reduce the amount of fissile materials in the world, which they see as a bad thing both for non-proliferation (since a country with stockpiles of fissile materials can basically become a nuclear power in a matter of weeks), disarmament (since having lots of fissile materials means nuclear states could scale up their nuclear programs very quickly if they chose to), and anti-terrorism (the more fissile materials abound, the more opportunities for theft or diversion by terrorist groups).

The Princeton crew is also quite active in administering the International Panel on Fissile Materials, which produces regular reports on the quantities of fissile materials in the world. Numbers are, as always, hard for me to visualize, so I have been experimenting with ways of visualizing them effectively. This is a visualization I cooked up this week, and I think it is mostly effective at conveying the basic issues regarding fissile materials, which is that the stockpiles of them are extremely large with respect to the amounts necessary to make weapons:

world fissile material stockpiles

Click the image to enlarge it. The small blue-ish blocks represent the approximate volume of 50 kg of highly-enriched uranium (which is on order for what you’d need for a simple gun-type bomb, like Little Boy), and the small silver-ish blocks are the same for 5 kg of separated plutonium (on order for use in a first-generation implosion weapon). One can play with the numbers there a bit but the rough quantities work out the same. Each of the “big” stacks contain 1,000 smaller blocks. All references to “tons” are metric tons (1,000 kg). The “person” shown is “Susan” from Google SketchUp. The overall scene, however, is rendered in Blender, using volumes computed by WolframAlpha.

I made this visualization after a few in which I rendered the stockpiles as single cubes. The cubes were quite large but didn’t quite convey the sense of scale — it was too hard for my brain, anyway, to make sense of how little material you needed for a bomb and put that into conversation with the size of the cube. Rendering it in terms of bomb-sized materials does the trick a bit better, I think, and helps emphasize the overall political argument that the Unmaking the Bomb authors are trying to get across: you can make a lot of bombs with the materials that the world possesses. If you want the run-down on which countries have these materials (spoiler: it’s not just the ones with nuclear weapons), check out the IPFM’s most recent report, with graphs on pages 11 and 18.

To return to the original thread: the bomb model I used for the cover of Unmaking the Bomb is one I’ve been playing with for a while now. As one might imagine, when I was learning to use Blender, the first thing I thought to try and model was Fat Man and Little Boy, because they are subjects dear to my heart and they present interesting geometric challenges. They are not so free-form and difficult as rendering something organic (like a human being, which is hard), but they are also not simply combinations of Archimedean solids. One of my goals for this academic year is to develop a scaled, 3D-printed model of the Fat Man bomb, with all of the little internal pieces you’d expect, based on the work of John Coster-Mullen. I’ve never done 3D-printing before, but some of my new colleagues in the Visual Arts and Technology program here at the Stevens Institute of Technology are experienced in the genre, and have agreed to help me learn it. (To learn a new technology, one always needs a project, I find. And I find my projects always involve nuclear weapons.)

For a little preview of what the 3D model might end up looking like, I expanded upon the model I developed for the Unmaking the Bomb cover when I helped put together the Unmaking the Bomb website. Specifically, I put together a little Javascript application that I am calling The Visual Atomic Bomb, which lives on the Unmaking the Bomb website:

The Visual Atomic Bomb screenshot

I can’t guarantee it will work with old browsers (it requires a lot of Javascript and transparent PNGs), but please, give it a shot! By hovering your mouse over the various layer names, it will highlight them, and you can click the various buttons (“hide,” “show,” “open,” “close,” “collapse,” “expand,” and so on) to toggle how the various pieces are displayed. It is not truly 3D, as you will quickly see — it uses pre-rendered layers, because 3D is still a tricky thing to pull off in web browsers — but it is maybe the next best thing. It has more detail than the one on the cover of the book, but you can filter a lot of it on and off. Again, the point is to emphasize the centrality of the fissile material, but to also show all of the apparatus that is needed to make the thing actually explode.

I like to think that Chuck Hansen, were he alive today, would appreciate my attempt to take his original diagrammatic representation into a new era. And I like to think that this kind of visualization can help people, especially non-scientists (among which I count myself), wrap their heads around the tricky technical aspects of a controversial and problematic technology.

  1. I wrote a very, very, very long paper* in graduate school about the relationship between visual tropes and claims to power through secrecy with relation to the drawing of nuclear weapons. I have never quite edited it into a publishable shape and I fear that it would be very hard to do anything with given the fact that you really need to reproduce the diagrams to see the argument, and navigating through the copyright permissions would probably take a year in and of itself (academic presses are really averse to the idea of relying on “fair use“), and funds that nobody has offered up! But maybe someday I will find some way to use it other than as a source for anecdotes for the blog. *OK, I’ll own up to it: it was 93 pages long (but only 62 pages of text!) when I turned it in to the professor. I was told I should either turn it into a long article or a short book. []